融合知识与情感的可解释性推荐系统

导语 目前可解释性推荐系统中显隐式特征的挖掘不够全面,生成的推荐理由文本也不够个性化和丰富化,提高推荐理由文本的质量有助于满足不同用户的需求。本期文章融合外部知识和方面情感来预测评分并双向生成个性化的、内容丰富的推荐理由。

关键词:可解释性推荐;评级预测;推荐原因生成;方面情感分析

文章题目:

Fusing Knowledge and Aspect Sentiment for Explainable Recommendation

文章地址:

10.1109/ACCESS.2020.3012347

[作者介绍]

PENG BAI,于2017年获得中国矿业大学(中国徐州)计算机科学与技术学院学士学位,目前正在攻读硕士学位。他的研究方向包括推荐系统和自然语言处理。

YANG XIA,目前是中国矿业大学计算机科学与技术学院的教授,其研究兴趣包括推荐系统、电子商务和服务计算。其h指数为2。

Kenny Zhu,于2017年和2020年分别获得中国矿业大学(中国徐州)计算机科学与技术学院学士学位和硕士学位。他的研究方向包括推荐系统和自然语言处理。

[期刊介绍]

IEEE ACCESS

IEEE Access是一个Open Access (OA)期刊,即开放存取期刊,有一个非常快速的同行评审和出版过程(约6周),也是一个展示IEEE所有领域的期刊。计算机科学3区Top,其h5-index:97,SCI Q2,JCI为0.92,SCIIF为3.758。

目录

01可解释的推荐系统

02模型输入与输出

03 基于转换分解机(TransFM)的预测评级

04评级预测评估

05结论

01可解释的推荐系统

在此之前,推荐系统的研究基本可分为协同过滤(CF)和基于内容的的方法,基于内容的推荐系统使用用户和商品的内容信息进行建模,通常是很直观的,但它在不同的应用程序域中收集内容信息是非常困难和耗时的。基于CF的方法利用群体智慧来避免了上述困难,

例如,基于用户的CF推荐的商品可以解释为“与您相似的用户喜欢这个商品”,基于物品的CF可以解释为“该物品与您之前喜欢的物品相似”。

这显著改进了推荐系统的准确性,但它却不如基于内容算法那么直观。

可解释的推荐系统可以定义为在向用户推荐商品时给出推荐理由,解释性可以提高推荐系统的透明度、说服力和有效性,还可以增强用户的信任度、满意度,甚至提高用户的购买率。像最近邻、主题建模、关联规则挖掘等的推荐系统,在挖掘用户评论的过程中,用户-物品之间特征交互不够全面,导致基于评论生成的推荐理由无法引起用户的兴趣

因此,本文对推荐系统的准确性和可解释性做了一系列优化:

1、通过一个融合了知识和评论方面情感特征的可解释的推荐模型,在预测评分和生成推荐原因时,充分利用从评论中提取的显隐性方面特征和用户意见来生成推荐理由;

2、推荐理由生成模型利用双向注意机制有效融合外部知识和方面情感来提高推荐理由的质量;

3、在表示形式中,有推荐原因标签或推荐原因文本,这里采用推荐原因文本以提升准确性。

02模型输入与输出

1、方面集

用户在审查一件商品时只会关注它们本身特定的属性,如:外观、功能、价格等,而在物质和外观方面,情感是积极的,在交付方面是消极的。

我们确定商品的方面集为a,可以表示为aaa = (a1, a2,…), am)∈A,其中aaa代表一个特定的方面,如材料或外观。

2、知识集

知识图是一种结构化的语义知识库,用于快速描述物理世界中的实体及其关系。推荐原因是个性化的,但是所获得的信息是不充分的。因此这里加入外部知识来丰富生成的推荐理由。

知识可以表示为单词序列kkk = (k1, k2,……, kg)∈K,其中g为某一知识的长度,K为知识集。

3模型输入

模型输入包含用户集U、商品集I、评价集D、方面aaa、知识kkk和商品标题xxx。

文章从评价集D中提取方面集aaa,从商品标题xxx中提取命名实体。然后在知识图中查询这些实体,得到知识集kkk。每个用户可以表示为u∈U,每个商品可以表示为i∈I。

评价集分为一个用户的所有评论和一个商品的所有评论。例如,来自用户u的评论为:

〖(D〗_(u,1),D_(u,2),…,D_(u,m))∈D

其中m是最大评论数。

相似地,商品i的评论为:

(D_(i,1),D_(i,2),…,D_(i,n))∈D

其中n是评论的最大数量。

通过这种方式,我们可以知道特定用户感兴趣地关注商品的哪些方面,以及用户关注特定商品的哪些方面。

4模型输出

当向用户U推荐商品i时,我们的模型预测评级并生成推荐的理由文本。其中,额定值范围为[1,5]。评分值越接近5,用户越喜欢该商品。推荐原因文本Y = (y1, y2,…, yt),解释了为什么系统向用户u推荐物品i,其中yj表示生成的推荐理由中的第j个单词。

03基于转换分解机(TransFM)的预测评级

图1:分解机KAER模型结构示意图。

1模型概述

模型KAER由评级预测推荐原因生成这两部分构成,如图1所示。其中预测评级是基于转换的分解机(TransFM),它结合了翻译和基于度量的方法来进行顺序推荐FM易于集成交互特性和处理高度稀疏的数据,TransFM在此基础上可以在任何特征向量上轻松地合并其他内容信息。另外, 方面融合负责融合方面和商品标题,知识融合负责融合从知识图中获得的相关知识,通过这两者的融合,可以产生个性化的、内容丰富的推荐理由。

2侧面情感分析

ABSA目的是将非结构化的评论文本转换为结构化的细粒度方面及其相应的情感极性,主要包括方面提取方面情感分类两个任务。

图2:用于方面提取的BERT概述图。

a方面提取:方面提取是一个序列标记任务。具体是通过使用BIO标记输入序列

BIO是一种序列标记方法,句子中的每个标记都被标记为{开始、内部、外部}中的一个。一个方面被标记为一个B,后面跟着零个或多个i

输入序列包含m个单词。它可以表示为

x=([CLS],x_1,x_2,…,x_m,[SEP])

其中[CLS]是序列开始的标记,[SEP]是序列结束的标记。

图3:面向方面情感分类的BERT概述图。

b方面情感分类:在方面情感分类后,从积极情感极性中提取出一组对应的形容词,极性预测为:

l_2=softmax(Wh_[CLS] +b_2 ),

其中∈, r是隐藏维的大小,, 3是情绪极性的数量(积极/中立/消极),。训练损失是极性的交叉熵。

3评级预测

TransFM学习每个特征维度的嵌入和转换空间,它用欧几里得距离的平方代替内积测量特征之间的相互作用强度。预测等级r表示为:

d2(vi + v0 i, vj)表示向量vi + v0 ivj之间的欧氏距离的平方:

评级预测损失函数表示为:

4推荐原因生成

目标是充分融合方面、项目标题和外部知识之后,生成个性化、内容丰富、高品质的推荐原因文本。方面融合这一步的训练可表达为:

其中XXX为项目标题,aaa为项目方面,yyy为输出序列,t为解码时间步长。融合表示如图4所示。

图4:该模型的输入嵌入是商品标题标记嵌入、位置嵌入和方面嵌入之和。

5知识融合

为了获得外部知识,我们从项目标题中提取命名实体,并在知识图DBpedia中查询这些实体来挖掘关键信息。这个过程如图1所示。

04评级预测评估

1数据集

在实验中,采用的是YelpAmazon的公共数据集。yelp是美国最大的评论网站,Amazon数据集包含来自Amazon的商品评论和元数据。

2评估指标

在推荐系统中,实验使用均方根误差(RMSE), RMSE被广泛应用于评价评分预测。RMSE越低,评级预测效果越好。RMSE可以表示为:

为了评估其可解释性,以双语评价候补生(BLEU)回忆导向候补生(ROUGE)为客观评价指标,BLEU和ROUGE被广泛应用于机器翻译和自然语言生成,BLEU分数越高,表示生成质量越好。BLEU的定义如下:

ROUGE-N主要基于召回,这里通过使用N-gram计算ROUGE-N分数:

3结果分析:

评级预测结果显示始终优于所有数据集上RMSE度量下的所有比较方法

推荐原因生成结果的可解释性

流畅性、多样性和整体质量三个方面独立地对人类主观评价文本进行评分,评分范围在[1,5]之间,评分越高,产生推荐原因的效果越好。

案例研究:以用户U1和U2为例, U1关注商品的外观、功能和质量,U2关注商品的价格、功能和交付,为他们生成的推荐原因文本侧重于他们各自关心的问题。

05结论

本文设计了一种可解释的推荐模型KAER,该模型充分利用评论中的方面情感信息,能够准确预测评分,同时生成个性化的、内容丰富的、高质量的推荐理由。针对推荐原因的生成,利用双向注意机制,有效融合商品标题、方面和外部知识,提出了推荐原因生成模型。实验结果表明,KAER模型在准确性和可解释性方面都优于现有的基线。未来我们可以考虑在可解释的推荐系统中加入社会关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值