numpy中的cumsum()函数的使用

关于numpy.cumsum()在官网中官方给了一个很好的例子。
在这里插入图片描述
cumsum的作用主要就是计算轴向的累加和。

里面最重要的参数就是axis

当里面的参数axis没有值时,默认是一个一维数组进行加和,即
a=np.array([[1,2,3],[4,5,6]])
np.cumsum()
输出1,3,6,10,15,21
即1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,1+2+3+4+5+6

np.cumsum(axis=0),按行累加
输出
array([[1, 2, 3],
[5, 7, 9]], dtype=int32)
5=1+4,7=2+5,9=3+6

np.cumsum(axis=1),按列累加
输出
array([[ 1, 3, 6],
[ 4, 9, 15]], dtype=int32)
3=1+2,6=1+2+3
9=4+5,15=4+5+6

感谢阅读,
我是啊帅和和,一位大数据专业大三学生。

### 回答1: NumPycumsum函数可以计算给定数组的累积和。具体来说,它返回一个数组,其每个元素都是原始数组该元素及其前面所有元素的和。 下面是一个示例: ```python import numpy as np arr = np.array([1, 2, 3, 4, 5]) cumsum_arr = np.cumsum(arr) print(cumsum_arr) # 输出 [ 1 3 6 10 15] ``` 在上面的示例,我们首先创建了一个NumPy数组`arr`,它包含了整数1到5。然后,我们使用`np.cumsum`函数计算了`arr`的累积和,并将结果存储在名为`cumsum_arr`的新数组。最后,我们打印了`cumsum_arr`,输出结果为`[1 3 6 10 15]`。 需要注意的是,`np.cumsum`函数默认将数组展开成一维数组进行计算,如果需要在多维数组的某个轴上进行累积和计算,可以指定`axis`参数。例如,`np.cumsum(arr, axis=0)`将在`arr`的第一个轴上进行累积和计算。 ### 回答2: numpycumsum函数是用来计算数组的累积和的函数。累积和是指从数组的第一个元素开始,逐个累加到当前元素的和。通过cumsum函数,可以快速计算出数组各个位置的累积和。 使用numpycumsum函数非常简单,只需要传入一个数组作为参数即可。函数会返回一个新的数组,其包含了原数组各个位置的累积和。 下面是一个例子: import numpy as np arr = np.array([1, 2, 3, 4, 5]) cumulative_sum = np.cumsum(arr) print(cumulative_sum) 输出结果为:[ 1 3 6 10 15] 输出结果的每个元素表示了原数组从头开始到当前位置的累积和。例如,第一个元素1表示了数组的第一个元素,第二个元素3表示了数组的前两个元素的累积和,依此类推。 numpycumsum函数还有一个可选的参数axis,用来指定计算累积和的轴。默认情况下,axis为None,表示计算整个数组的累积和。如果指定axis的值,则会计算沿指定轴的累积和。 总的来说,numpycumsum函数是一个非常实用的函数,可以方便地计算数组的累积和。无论是用来处理一维数组还是多维数组,cumsum函数都能帮助我们快速得到累积和的结果。 ### 回答3: numpy.cumsumnumpy的一个函数,用于计算数组元素的累积和。 累积和是指对数组的元素依次进行求和操作,将每次求和的结果记录下来,最终得到一个新的数组。新数组的每个元素是原数组从开始位置到当前位置的所有元素的和。 具体的使用方法如下: import numpy as np arr = np.array([1, 2, 3, 4, 5]) cum_sum = np.cumsum(arr) print(cum_sum) 输出结果为:[ 1 3 6 10 15] 解释输出结果:原数组arr为[1, 2, 3, 4, 5],第一个元素1就是累积和的第一个元素,第二个元素是1+2=3,第三个元素是1+2+3=6,以此类推,最后一个元素是1+2+3+4+5=15。 cumsum函数还可以接受一个axis参数,指定沿着数组的哪个轴进行求和操作,当axis=0时,表示对每一列的元素进行累积和的计算;当axis=1时,表示对每一行的元素进行累积和的计算。 总之,numpy.cumsum函数是用来计算数组元素的累积和的,将每次求和的结果保存下来,返回一个新的数组。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啊帅和和。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值