梯度:
单变量函数中,梯度是函数的微分,即变量所处点的切线的斜率;
多元函数中,梯度是一个向量,这个向量包含了在某点各个变量各自的微分,向量具有方向,即梯度的方向,该方向是该点在函数上变化最快的方向,梯度的方向是上升最快;梯度的反方向下降最快。
α:
学习率或者步长,每次沿梯度方向上升或下降的长度。
损失函数:
一个样本的误差
代价函数:
用于找到最优解的目的函数(在所有数据基础上拟合一条线,使尽量的数据集 中的数据符合这条线),定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。通过代价函数就能算出拟合的线与实际的差距,判断哪一条线最符合实际,最优解即代价函数取最小时。
- 平方(均方)误差代价函数 代价函数的理解:每个样本值与该点预测值之差的平方总和的平均数再取二分之一。
梯度下降算法
如果代价函数是J(θ_0,θ_1),梯度下降算法的目的是持续改变θ_0与θ_1的值,使得代价函数J的值达到最小。
正规方程
求θ的解析解法,直接一次性求解θ最优值,利用公式θ = (XT*X)-1*XT*Y,使用时不需要学习率α、特征缩放和多次迭代,但当特征值n过大时,最好选用梯度下降算法。
Logistic Regression
用于多分类问题的一种分类算法,使假设函数的值始终处于0和1之间。hθ(x) = g(θT*X) =1/1+e-θT*X