书生·浦语大模型实战营第二期 第3节笔记

本文介绍了RAG技术,如何通过茴香豆应用实现在知识密集型任务中的高效回答,以及茴香豆如何利用RAG技术进行非参数知识更新,提升基础模型的准确性和外部记忆能力。对比展示了茴香豆在RAG支持下的问答效果提升。
摘要由CSDN通过智能技术生成

由书生·浦语社区贡献者【北辰】带来【茴香豆:搭建你的 RAG 智能助理】讲解

1、RAG 基础介绍

2、茴香豆产品简介

3、使用茴香豆搭建RAG知识库实战

RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆

RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用的茴香豆应用,就应用了 RAG 技术,可以快速、高效的搭建自己的知识领域助手。

RAG 效果比对:

由于茴香豆是一款比较新的应用, InternLM2-Chat-7B 训练数据库中并没有收录到它的相关信息。左图中关于 huixiangdou 的 3 轮问答均未给出准确的答案。右图未对 InternLM2-Chat-7B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值