线性代数与矩阵论
文章平均质量分 91
你哥同学
这个作者很懒,什么都没留下…
展开
-
【线性代数与矩阵论】矩阵的酉相似
2023年11月7日#algebra。原创 2024-01-27 14:29:55 · 3000 阅读 · 0 评论 -
【线性代数与矩阵论】范数理论
2023年11月16日向量的长度也称为向量的二范数定义 设 ∣∣⋅∣∣{|| \cdot ||}∣∣⋅∣∣ 是 Cn{ \mathbb C^n }Cn 上的一个泛函,满足则称 ∣∣⋅∣∣{|| \cdot ||}∣∣⋅∣∣ 是 Cn{ \mathbb C^n}Cn 上的一个向量范数。定理 对任意 x,y∈Cn{x,y\in \mathbb C^n}x,y∈Cn ,有设 x∈Cn{x\in \mathbb C^n}x∈Cn ,定义长度,欧几里得空间中的距离。向量的 p{p}p 范数:∣∣x∣∣p原创 2024-01-21 21:31:44 · 1523 阅读 · 0 评论 -
【线性代数与矩阵论】矩阵的谱半径与条件数
设。原创 2024-01-21 21:29:34 · 2479 阅读 · 0 评论 -
【线性代数与矩阵论】Jordan型矩阵
2023年11月3日#algebra在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被拉伸的倍数为该特征向量的特征值(特征根)。矩阵的相同特征值有其对应的代数重数与几何重数,相同特征值的代数重数就是相同特征值的个数,几何重数就是相同特征值所对应特征向量的个数。显然,特征向量的拉伸量可能相同,即代数重数大于等于几何重数,也就是多个相同特征值可能对应一个特征向量。也可以说,对同一个特征值,可能有多个特征向量,而该特征值的代数重数大于原创 2023-12-10 23:00:41 · 2120 阅读 · 0 评论 -
【线性代数与矩阵论】坐标变换与相似矩阵
2023年11月4日#algebra。原创 2023-11-24 21:52:57 · 905 阅读 · 0 评论