【复变函数】常用公式大全

欢迎纠错


#基本公式

f ( z ) = u + v i   f ( z ) 是 一 个 向 量 场 , 记 为 H , 取 其 共 轭 H ‾   若 该 共 轭 向 量 场 满 足 C − R 方 程 ( 无 散 无 旋 ) :   ∂ u ∂ x = ∂ v ∂ y , 即 ∇ ⋅ H ‾ = ∂ u ∂ x − ∂ v ∂ y = 0   ∂ v ∂ x = − ∂ u ∂ y , 即 ∇ × H ‾ = − ( ∂ u ∂ y + ∂ v ∂ x ) = 0   ∂ u ∂ r = 1 r ∂ v ∂ θ   ,   ∂ v ∂ r = − 1 r ∂ u ∂ θ   则 f 为 解 析 函 数   若 ∇ 2 u = 0 , ∇ 2 v = 0 , 且 满 足 C R 方 程 , 则 f 为 解 析 函 数   对 于 u , − v 分 量 , 其 梯 度 的 散 度 为 零 , 也 就 是 无 极 值 , 就 是 调 和 f(z)=u+vi\\\ \\ f(z)是一个向量场,记为H,取其共轭\overline{H}\\\ \\ 若该共轭向量场满足C-R方程(无散无旋):\\\ \\ \frac{\partial u}{\partial x}= \frac{\partial v}{\partial y} ,即\nabla\cdot\overline{H}=\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \\\ \\ \frac{\partial v}{\partial x}= -\frac{\partial u}{\partial y},即\nabla\times\overline{H}=-(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x})=0 \\\ \\ \frac{\partial u}{\partial r}= \frac 1 r \frac{\partial v}{\partial \theta}\space, \space\frac{\partial v}{\partial r}= -\frac 1 r \frac{\partial u}{\partial \theta}\\\ \\ 则f为解析函数\\\ \\ 若\nabla^2u=0,\nabla^2v=0,且满足CR方程,则f为解析函数\\\ \\ 对于u,-v分量,其梯度的散度为零,也就是无极值,就是调和 f(z)=u+vi f(z)HH CR() xu=yvH=xuyv=0 xv=yu×H=(yu+xv)=0 ru=r1θv , rv=r1θu f 2u=0,2v=0,CRf uv

常 数 , P n ( z ) , P n ( z ) P m ( z ) 解 析 常数,P_n(z),\frac{P_n(z)}{P_m(z)} 解析 Pn(z)Pm(z)Pn(z)


指 数 函 数 : e z = e x ( cos ⁡ y + i sin ⁡ y ) , 单 叶 , 有 反 函 数   对 数 函 数 : L n ( z ) = l n ∣ z ∣ + i A r g z , L n k ( z ) = l n ∣ z ∣ + i ( a r g z + 2 k π )   l n z = l n ∣ z ∣ + i a r g z , l n k z = l n z + i ⋅ 2 k π   三 角 函 数 : sin ⁡ z = e i z − e − i z 2 i , cos ⁡ z = e i z + e − i z 2   双 曲 函 数 : sinh ⁡ z = e z − e − z 2 , cosh ⁡ z = e z + e − z 2   cosh ⁡ 2 z − sinh ⁡ 2 z = 1 , ( sinh ⁡ z ) ′ = cosh ⁡ z , ( cosh ⁡ z ) ′ = sinh ⁡ z   sinh ⁡ ( z 1 + z 2 ) = sinh ⁡ z 1 cosh ⁡ z 2 + cosh ⁡ z 1 sinh ⁡ z 2   sinh ⁡ ( z 1 + z 2 ) = cosh ⁡ z 1 cosh ⁡ z 2 + sinh ⁡ z 1 sinh ⁡ z 2   幂 函 数 : w = e a L n ( z )   反 三 角 函 数 :   arctan ⁡ z = 1 2 i L n ( 1 + i z 1 − i z )   arcsin ⁡ z = − i L n ( i z + 1 − z 2 )   arccos ⁡ z = − i L n ( i z + i 1 − z 2 )   指数函数:e^z=e^x(\cos y+i\sin y),单叶,有反函数\\\ \\ 对数函数:Ln(z)=ln|z|+i Argz,Ln_k(z)=ln|z|+i(argz+2k\pi)\\\ \\ lnz=ln|z|+iargz,ln_kz=lnz+i\cdot 2k\pi\\\ \\ 三角函数:\sin z=\frac{e^{iz}-e^{-iz}}{2i}, \cos z=\frac{e^{iz}+e^{-iz}}{2}\\\ \\ 双曲函数:\sinh z=\frac{e^{z}-e^{-z}}{2}, \cosh z=\frac{e^{z}+e^{-z}}{2}\\\ \\ \cosh^2z-\sinh^2z=1,(\sinh z)'=\cosh z,(\cosh z)'=\sinh z\\\ \\ \sinh(z_1+z_2)=\sinh z_1\cosh z_2+\cosh z_1 \sinh z_2\\\ \\ \sinh(z_1+z_2)=\cosh z_1\cosh z_2+\sinh z_1 \sinh z_2\\\ \\ 幂函数:w=e^{aLn(z)}\\\ \\ 反三角函数:\\\ \\ \arctan z=\frac{1}{2i}Ln(\frac{1+iz}{1-iz})\\\ \\ \arcsin z=-iLn(iz+\sqrt{1-z^2})\\\ \\ \arccos z=-iLn(iz+i\sqrt{1-z^2})\\\ \\ ez=ex(cosy+isiny) Ln(z)=lnz+iArgzLnk(z)=lnz+i(argz+2kπ) lnz=lnz+iargzlnkz=lnz+i2kπ sinz=2ieizeizcosz=2eiz+eiz sinhz=2ezezcoshz=2ez+ez cosh2zsinh2z=1(sinhz)=coshz(coshz)=sinhz sinh(z1+z2)=sinhz1coshz2+coshz1sinhz2 sinh(z1+z2)=coshz1coshz2+sinhz1sinhz2 w=eaLn(z)  arctanz=2i1Ln(1iz1+iz) arcsinz=iLn(iz+1z2 ) arccosz=iLn(iz+i1z2 ) 


∫ c f ( z ) d z = ∫ c u d x − v d y + i ∫ c v d x + u d y = ∫ α β f [ z ( t ) ] z ′ ( t ) d t \int_cf(z)dz=\int_c udx-vdy+i\int_cvdx+udy=\int_\alpha^\beta f[z(t)]z'(t)dt cf(z)dz=cudxvdy+icvdx+udy=αβf[z(t)]z(t)dt
∫ ∣ z − z 0 ∣ = ρ d z ( z − z 0 ) n = { 2 π i , n = 1 0 , o t h e r w i s e \int_{|z-z_0|=\rho} \frac{dz}{(z-z_0)^n}=\begin{cases} 2\pi i, & n=1\\ 0, & otherwise \end{cases} zz0=ρ(zz0)ndz={2πi,0,n=1otherwise
f ( z ) 在 D 内 连 续 { ∫ c f ( z ) d z 在 D 内 与 路 径 无 关 ( 无 旋 、 保 守 ) ∮ c f ( z ) d z = 0 有 F ( z ) , 使 得 f ( z ) = F ′ ( z )   ∫ c f ( z ) d z = F ( z 2 ) − F ( z 1 ) , F 为 矢 量 场 f 的 势 场 f(z)在D内连续\left \{ \begin{array}{c} \int_cf(z)dz在D内与路径无关(无旋、保守) \\ \oint_cf(z)dz=0 \\ 有F(z),使得f(z)=F'(z) \end{array} \right. \\\ \\ \int_cf(z)dz=F(z_2)-F(z_1),F为矢量场f的势场 f(z)Dcf(z)dzDcf(z)dz=0F(z)使f(z)=F(z) cf(z)dz=F(z2)F(z1)Ff

#几个高斯的公式(其实都是留数法)

G a u s s 积 分 定 理 :   { ∫ ∂ D f ( z ) d z = 0 ∂ D 为 D 的 正 向 边 界 ∮ c f ( z ) d z = 0 c ∈ D   G a u s s 积 分 公 式 :   f ( z 0 ) = 1 2 π i ∫ ∂ D f ( z ) z − z 0 d z   f ( z 0 ) = 1 2 π ∫ 0 2 π f ( z 0 + R e i θ ) d θ   G a u s s 高 阶 导 数 公 式 :   f ( n ) ( z 0 ) = n ! 2 π i ∫ ∂ D f ( z ) ( z − z 0 ) n + 1 d z   Gauss积分定理:\\\ \\ \left \{ \begin{array}{c} \int_{\partial D}f(z)dz=0 & \partial D 为D的正向边界 \\ \oint_cf(z)dz=0 & c \in D \end{array} \right.\\\ \\ Gauss积分公式:\\\ \\ f(z_0)=\frac 1 {2\pi i}\int_{\partial D}\frac{f(z)}{z-z_0}dz\\\ \\ f(z_0)=\frac 1 {2 \pi} \int_0^{2\pi}f(z_0+Re^{i\theta})d\theta\\\ \\ Gauss高阶导数公式:\\\ \\ f^{(n)}(z_0)=\frac {n!} {2\pi i}\int_{\partial D}\frac{f(z)}{(z-z_0)^{n+1}}dz\\\ \\ Gauss {Df(z)dz=0cf(z)dz=0DDcD Gauss f(z0)=2πi1Dzz0f(z)dz f(z0)=2π102πf(z0+Reiθ)dθ Gauss f(n)(z0)=2πin!D(zz0)n+1f(z)dz 

#留数法

f ( z ) 在 D 内 除 了 有 限 个 奇 点 外 处 处 解 析 , c 是 D 内 包 围 若 干 奇 点 的 无 交 叉 正 向 闭 曲 线 , 则 有   ∫ c f ( z ) d z = 2 π i ∑ k = 1 n R e s [ f ( z ) , z k ]   计 算 规 则 :   1. 如 果 z 0 为 f ( z ) 的 一 级 极 点 , 那 么 R e s [ f ( z ) , z 0 ] = lim ⁡ z → z 0 ( z − z 0 ) f ( z )   2. 如 果 z 0 为 f ( z ) 的 m 级 极 点 , 那 么   R e s [ f ( z ) , z 0 ] = 1 ( m − 1 ) ! lim ⁡ z → z 0 d m − 1 d z m − 1 ( ( z − z 0 ) m f ( z ) )   3. 设 f ( z ) = P ( z ) Q ( z ) , P ( z ) 、 Q ( z ) 在 z 0 都 解 析 ,   如 果 P ( z 0 ) ≠ 0 , Q ( z 0 ) = 0 , Q ′ ( z 0 ) ≠ 0 , z 0 为 f ( z ) 的 一 级 极 点   R e s [ f ( z ) , z 0 ] = P ( z 0 ) Q ′ ( z 0 )   4. 如 果 f ( z ) 在 扩 充 复 平 面 内 有 有 限 个 孤 立 奇 点 ,   那 么 f ( z ) 在 所 有 奇 点 ( 包 括 无 穷 远 点 ) 的 留 数 和 为 0 f(z)在D内除了有限个奇点外处处解析,c是D内包围若干奇点的无交叉正向闭曲线,则有\\\ \\ \int_cf(z)dz=2\pi i\sum_{k=1}^n Res[f(z), z_k]\\\ \\ 计算规则:\\\ \\ 1.如果z_0为f(z)的一级极点,那么Res[f(z), z_0]=\lim_{z\to z_0}(z-z_0)f(z)\\\ \\ 2.如果z_0为f(z)的m级极点,那么\\\ \\ Res[f(z), z_0]=\frac{1}{(m-1)!}\lim_{z\to z_0}\frac{d^{m-1}}{dz^{m-1}}((z-z_0)^mf(z))\\\ \\ 3.设f(z)=\frac{P(z)}{Q(z)},P(z)、Q(z)在z_0都解析,\\\ \\如果P(z_0)\ne 0,Q(z_0)=0,Q'(z_0)\ne0,z_0为f(z) 的一级极点\\\ \\ Res[f(z), z_0]=\frac{P(z_0)}{Q'(z_0)}\\\ \\ 4.如果f(z)在扩充复平面内有有限个孤立奇点,\\\ \\那么f(z)在所有奇点(包括无穷远点)的留数和为0 f(z)DcD线 cf(z)dz=2πik=1nRes[f(z),zk]  1.z0f(z)Res[f(z),z0]=zz0lim(zz0)f(z) 2.z0f(z)m Res[f(z),z0]=(m1)!1zz0limdzm1dm1((zz0)mf(z)) 3.f(z)=Q(z)P(z),P(z)Q(z)z0 P(z0)=0,Q(z0)=0,Q(z0)=0,z0f(z) Res[f(z),z0]=Q(z0)P(z0) 4.f(z) f(z)0

#一些公式

1 z 2 + 1 = 1 2 i ( 1 z − i − 1 z + i )   ( z 2 + 1 ) 2 = ( z + i ) 2 ( z − i ) 2   a + b i = i ( b − a i )   cos ⁡ , sin ⁡ 都 只 有 单 零 点   cosh ⁡ z = cos ⁡ i z ; sinh ⁡ z = 1 i sin ⁡ i z   cos ⁡ 2 θ = 1 2 ( z 2 + 1 z 2 )   cos ⁡ ( n π ) = ( − 1 ) n ; sin ⁡ ( n π + π 2 ) = ( − 1 ) n   cos ⁡ ( n ) x = cos ⁡ ( x + n π 2 ) ; sin ⁡ ( n ) x = sin ⁡ ( x + n π 2 )   cos ⁡ ( π 2 + x ) = − sin ⁡ x 唯 一 负 号 \frac{1}{z^2+1}=\frac 1 {2i}(\frac{1}{z-i}-\frac{1}{z+i})\\\ \\ (z^2+1)^2=(z+i)^2(z-i)^2\\\ \\ a+bi=i(b-ai)\\\ \\ \cos, \sin都只有单零点\\\ \\ \cosh z=\cos iz;\sinh z=\frac 1 i \sin iz\\\ \\ \cos 2\theta=\frac 1 2 (z^2+\frac 1 {z^2})\\\ \\ \cos (n\pi)=(-1)^n;\sin (n\pi+\frac \pi 2)=(-1)^n\\\ \\ \cos^{(n)} x=\cos(x+\frac{n\pi}{2});\sin^{(n)} x=\sin(x+\frac{n\pi}{2})\\\ \\ \cos(\frac \pi 2+x)=-\sin x唯一负号 z2+11=2i1(zi1z+i1) (z2+1)2=(z+i)2(zi)2 a+bi=i(bai) cos,sin coshz=cosizsinhz=i1siniz cos2θ=21(z2+z21) cos(nπ)=(1)nsin(nπ+2π)=(1)n cos(n)x=cos(x+2nπ)sin(n)x=sin(x+2nπ) cos(2π+x)=sinx

#一些积分

1. 对 于 : ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ , cos ⁡ θ = z 2 + 1 2 z , sin ⁡ θ = z 2 − 1 2 i z , d z = i z d θ   1.对于:\int_0^{2\pi}R(\cos\theta,\sin\theta)d\theta,\\\cos\theta=\frac{z^2+1}{2z},\sin\theta=\frac{z^2-1}{2iz},dz=izd\theta\\\ \\ 1.02πR(cosθ,sinθ)dθcosθ=2zz2+1sinθ=2izz21dz=izdθ 
2. 对 于 : ∫ − ∞ + ∞ P ( z ) Q ( z ) d x , Q 无 实 零 点 , Q 比 P 高 至 少 两 次 , 则   ∫ − ∞ + ∞ P ( z ) Q ( z ) d x = 2 π i ∑ 上 半 平 面 内 奇 点 R e s [ f ( z ) , z k ]   2.对于:\int_{-\infty}^{+\infty}\frac{P(z)}{Q(z)}dx,\\Q无实零点,Q比P高至少两次,则\\\ \\ \int_{-\infty}^{+\infty}\frac{P(z)}{Q(z)}dx=2\pi i\sum_{上半平面内奇点} Res[f(z), z_k]\\\ \\ 2.+Q(z)P(z)dxQQP +Q(z)P(z)dx=2πiRes[f(z),zk] 
3. 对 于 : ∫ − ∞ + ∞ P ( z ) Q ( z ) e i a x d x , a 非 0 , Q 无 实 零 点 , Q 比 P 至 少 高 一 次   ∫ − ∞ + ∞ P ( z ) Q ( z ) e i a x d x = { 2 π i ∑ 上 半 平 面 内 奇 点 R e s [ f ( z ) , z k ] a > 0   ( ∫ − ∞ + ∞ P ( z ) Q ( z ) e i ∣ a ∣ x d x ) ‾ a < 0 3.对于:\int_{-\infty}^{+\infty}\frac{P(z)}{Q(z)}e^{iax}dx,\\ a非0,Q无实零点,Q比P至少高一次\\\ \\ \int_{-\infty}^{+\infty}\frac{P(z)}{Q(z)}e^{iax}dx= \begin{cases} 2\pi i\sum_{上半平面内奇点} Res[f(z), z_k] & a>0\\\ \\ \overline{(\int_{-\infty}^{+\infty}\frac{P(z)}{Q(z)}e^{i|a|x}dx)}&a<0 \end{cases} 3.+Q(z)P(z)eiaxdxa0QQP +Q(z)P(z)eiaxdx=2πiRes[f(z),zk] (+Q(z)P(z)eiaxdx)a>0a<0


E u l e r − P o i s s o n 积 分 : ∫ 0 + ∞ e − x 2 d x = π 2   L a p l a c e 积 分 : ∫ 0 + ∞ cos ⁡ a x 1 + x 2 d x ( a > 0 ) = π 2 e − a   D i r i c h l e t 积 分 : ∫ 0 + ∞ sin ⁡ x x d x = π 2   P o i s s o n 积 分 : ∫ 0 + ∞ e − x 2 cos ⁡ ( 2 b x ) d x = π 2 e − b 2   F r e s n e l 积 分 : ∫ 0 + ∞ cos ⁡ ( x 2 ) d x = ∫ 0 + ∞ sin ⁡ ( x 2 ) d x = 2 π 4 Euler-Poisson积分: \int_0^{+\infty}e^{-x^2}dx=\frac{\sqrt{\pi}} 2\\\ \\ Laplace积分:\int_0^{+\infty}\frac{\cos ax}{1+x^2}dx(a>0)=\frac \pi 2 e^{-a}\\\ \\ Dirichlet积分:\int_0^{+\infty}\frac{\sin x} xdx=\frac \pi 2\\\ \\ Poisson积分:\int_0^{+\infty}e^{-x^2}\cos( 2bx) dx=\frac{\sqrt{\pi}} 2e^{-b^2}\\\ \\ Fresnel积分:\int_0^{+\infty}\cos(x^2)dx=\int_0^{+\infty}\sin(x^2)dx=\frac{\sqrt{2\pi}} 4 EulerPoisson0+ex2dx=2π  Laplace0+1+x2cosaxdx(a>0)=2πea Dirichlet0+xsinxdx=2π Poisson0+ex2cos(2bx)dx=2π eb2 Fresnel0+cos(x2)dx=0+sin(x2)dx=42π

  • 9
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
函数常用换 作 者: 黄大奎 ,陶德元 著 出版时间:2013 丛编项: 高等学校教材 内容简介   《函数常用换/高等学校教材》内容包括:数与函数,解析函数函数的积分,级数,留数,保形换,傅里叶换,拉普拉斯换,z换等9章。每章都配有应用实例和巩固该章内容的例题及习题,章末“本章点评”对相关内容从数学概念、数学方法、数学思想上进行评述。书末附有部分习题的参考答案。为适应目前计划为48-64学时的课程安排,《函数常用换/高等学校教材》的编写没有追求理论系统的完备性和普适性,而是力求准确讲述后继专业课中最需要的内容,注重揭示数学概念和数学方法的思想实质,适当解释重要数学概念、数学理论和数学方法的物理意义。《函数常用换/高等学校教材》可作为电子信息类、电气类专业的函数教材,也可供相关工程技术人员参考使用。 目录 第1章 数与函数 1.1 数的表示形式及代数运算 1 数的各种表示形式 2 数的代数运算 1.2 函数及其极限与连续性 1 平面上点集的一些基本概念 2 函数的概念 3 函数的极限 4 函数的连续性 本章点评 习题一 第2章 解析函数 2.1 函数的可导性 1 函数的导数及求导法则 2 函数可导的充要条件 2.2 解析函数概念及初等解析函数 1 解析函数概念 2 初等解析函数 本章点评 习题二 第3章 函数的积分 3.1 积分概念及基本计算方法 1 积分的定义及基本性质 2 可积条件及积分的基本计算方法 3.2 柯西积分定理 l 柯西积分定理 2 原函数 3.3 柯西积分公式及其推论 1 柯西积分公式 2 解析函数的无穷次可微性 3.4 由调和函数确定解析函数 3.5 解析函数的物理意义 本章点评 习题三 第4章 级数 4.1 级数的一般概念及基本性质 1 数项级数 2 幂级数 4.2 泰勒级数 1 泰勒定理 2 一些初等函数的泰勒展式 3 解析函数零点的孤立性及内部唯一性定理 4.3 洛朗级数 1 洛朗级数概念及洛朗定理 2 洛朗展开举例 本章点评 习题四 第5章 留数 5.1 孤立奇点的分类及判别方法 1 有限孤立奇点的情形 2 无穷远点为孤立奇点的情形 5.2 留数理论 1 留数概念及求法 2 留数定理 3 应用举例 …… 第6章 保形换 第7章 傅里叶换 第8章 拉普拉斯换 第9章 z换 附录 Ⅰ傅氏换简表 附录 Ⅱ拉氏换简表 部分习题参考答案 参考文献
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值