数值分析
文章平均质量分 84
你哥同学
这个作者很懒,什么都没留下…
展开
-
【数值分析】数值微分
基于拉格朗日插值的求导方法并不是步长越小精度越好,缺点是只能求出节点处的导数。用插值多项式的导数来近似替代原函数的导数。原创 2024-01-14 17:34:24 · 1226 阅读 · 0 评论 -
【数值分析】最小二乘,最佳一致逼近
的交错点,且这个误差函数在这几个交错点上的绝对值都相等,都为极值点。次逼近函数,使得函数与逼近函数的差在区间上有。matlab可以使用左除来求解最小二乘问题。上的二次最佳一致逼近函数,并估计误差。所得线性拟合曲线为(保留四位小数)试用最小二乘法求线性拟合曲线。上的一次最佳一致逼近多项式。次首一切比雪夫多项式。上的函数的最佳逼近,对于。次最佳一致逼近多项式。次首一切比雪夫多项式。原创 2024-01-14 17:25:57 · 1350 阅读 · 0 评论 -
【数值分析】区间折半法,matlab实现
从梯形公式出发,上一步步长为。,则有步长折半后的积分。原创 2024-01-14 17:22:00 · 682 阅读 · 0 评论 -
【数值分析】最佳平方逼近,最佳逼近
所以需要一种法方程矩阵简单的基函数,所以用勒让德多项式。计算量大,而且易出现病态方程(解不出)matlab画切比雪夫多项式的函数图像。与最佳平方逼近得到的结果是一样的。解:使用勒让德多项式列出法方程组。的二次最佳平方逼近多项式。的二次最佳平方逼近多项式。使得发方程矩阵为对角阵。的最佳平方逼近函数。原创 2024-01-09 02:03:15 · 2974 阅读 · 0 评论 -
【数值分析】逼近,正交多项式
曲线拟合的最小二乘法可以克服龙格现象,同时不会有大计算量。用函数序列pnx去近似一个函数fx,称为。用函数Φ去近似一堆离散点,称为。最小二乘法是最佳平方逼近的离散情形。使用多项式拟合时,如果要拟合的多项式次数等于离散点的个数减一,则最小二乘拟合多项式与多项式插值得到的插值多项式相同。用多项式做最小二乘的基函数,当n较大时,法方程组的解对初始数据的微小变化非常敏感,属于“病态”问题。所以通过使用正交多项式来避免求解法方程组。在有限集合中存在最大值和最小值。即损失函数Li1∑。原创 2024-01-09 01:59:58 · 1290 阅读 · 0 评论 -
【数值分析】非线性方程求根,二分法,割线法,matlab实现
割线法比起牛顿迭代法不需要计算导数。二分法是线性收敛的,如果指定精度。为加速后的不动点迭代格式。需要知道两个的函数初始值,,则最多需要迭代步数。matlab编程实现。算是一种不动点迭代。原创 2024-01-06 01:30:59 · 2288 阅读 · 1 评论 -
【数值分析】非线性方程求根,牛顿法,牛顿下山法,matlab实现
收敛时牛顿法的收敛速度是二阶的,不低于二阶。如果函数有重根,牛顿法一般不是二阶收敛的。实际上是对每次迭代跳跃步长的修正,试着少条一点距离,看是否在下山。matlab编程实现。原创 2024-01-06 01:28:38 · 1065 阅读 · 0 评论 -
【数值分析】Hermite插值
理论和应用中提出的某些插值问题,要求插值函数 p(x){p(x)}p(x) 具有一定的光滑度,即在插值节点处满足一定的导数条件,这类插值问题称为Hermite插值问题。题目大多以三次Hermite插值为主。三次Hermite插值需要四个条件,二次Hermite插值需要三个条件,分类如下:Hermite插值我们一定会知道给定点的函数值,和某些点的导数值。由多项式插值得到的插值函数是唯一的,我们可以先用已知点构造拉格朗日或牛顿插值,得到一部分插值多项式,再根据导数值往插值多项式加入待定系数项,并代入导数值求解原创 2024-01-04 22:18:59 · 3792 阅读 · 0 评论 -
【数值分析】插值法,lagrange插值,牛顿插值
插值法是一种通过已知数据点来估计未知数据点的方法。它通过构建一个函数或曲线,使其经过已知数据点,从而在数据点之间进行估计或预测。插值法的基本思想是假设已知数据点之间存在某种规律或趋势,并利用这种规律来推断未知数据点的值。通过插值法,我们可以在给定的数据点集合上构建一个连续的函数,从而可以在数据点之间进行插值计算。需要注意的是,插值法只能在已知数据点之间进行插值,对于超出已知数据范围的数据点,插值结果可能不准确。此外,插值法的选择应根据具体问题和数据特点进行,以获得最佳的插值效果。原创 2024-01-04 22:16:43 · 2379 阅读 · 0 评论 -
【数值分析】三次样条插值
2023年11月5日#analysis样条函数即满足一定光滑性的分段多项式。对区间 (−∞,+∞){(-\infty,+\infty)}(−∞,+∞) 的一个分割:Δ:−∞原创 2024-01-03 03:02:31 · 2124 阅读 · 0 评论 -
【数值分析】高斯型求积公式,任意区间三点gauss求积公式,matlab实现
∫abρxfxdx≈i1∑nAifxi如果求积公式具有2n−1次代数精度,则称对应的节点x1x2⋯xn为Gauss点,此时求积公式称为Gauss型求积公式。为了讨论方便,本节取n个节点,并记节点为x1x2⋯xn,从1开始取!同时,所讨论的积分均为带有权函数ρx的积分。插值型求积公式∫abρxfxdx≈i1∑nAifxi。原创 2024-01-03 02:59:19 · 5597 阅读 · 0 评论 -
【数值分析】数值积分,Romberg积分法,外推加速,matlab实现,牛顿科茨公式
个等距节点上的n次拉格朗日插值多项式替代,即得所谓的牛顿-科茨Newton-Cotes公式。用常数、线性插值函数和抛物线插值函数代替再积分的结果,进一步推广,将。中点公式、梯形公式与Simpson公式可以分别看成是。,推出计算精度更高的积分。原创 2024-01-02 20:23:39 · 1641 阅读 · 0 评论 -
【数值分析】数值积分,复合中点,复合梯形,复合Simpson,matlab实现
2023年11月29日#analysis。原创 2024-01-02 20:20:27 · 2870 阅读 · 0 评论 -
【数值分析】常微分方程的数值解,欧拉公式,梯形公式,龙格库塔公式,matlab实现
2023年11月30日#analysis一阶常微分方程初值问题的一般形式为:{dydx=f(x,y),a≤x≤by(a)=α\begin{cases} \frac{\mathrm d y}{\mathrm dx} =f(x,y) ,&a\le x\le b \\ \\y(a)= \alpha \end{cases}⎩⎨⎧dxdy=f(x,y),y(a)=αa≤x≤b其中 f{f}f 是 x{x}x 和 y{y}y 的已知函数, α{ \alpha }α 为给定的初值。Lipschitz原创 2024-01-02 04:39:14 · 2313 阅读 · 0 评论 -
【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR
2024年1月1日#analysis。原创 2024-01-02 04:34:41 · 2103 阅读 · 0 评论 -
【数值分析】choleskey分解,matlab实现
矩阵写出来就行,非常好写,编程直接参考同济《现代数值计算》算法2.2.3。手算的话根据转置的性质直接把。原创 2024-01-01 04:10:16 · 1108 阅读 · 0 评论 -
【数值分析】追赶法解三对角方程组,matlab实现
如果存在Doolittle分解,则有。我自己减去我左边乘以我上面。matlab编程实现。原创 2024-01-01 03:05:50 · 2802 阅读 · 0 评论 -
【数值分析】LU分解解Ax=b,matlab自己编程实现
【代码】【数值分析】LU分解解Ax=b,matlab自己编程实现。原创 2024-01-01 03:02:20 · 2520 阅读 · 0 评论 -
【数值分析】高斯消元法,matlab实现
选每列模最大的元素作为主元,即被除数。原创 2024-01-01 02:35:31 · 2103 阅读 · 0 评论 -
【数值分析】反幂法,matlab实现
一般会使用结合原点平移的方法来求最靠近某个数的特征值和特征向量。的按模最大特征值和对应特征向量来求矩阵。的特征值及特征向量,两次迭代。每次乘完之后要规范化,防止上溢或下溢。要保证矩阵最小特征值只有一个,有。的特征值,及其对应的特征向量。个线性无关的特征向量,这里要乘模最大元素的符号。反幂法matlab实现。求归一化后的初始向量。原创 2023-12-26 22:42:19 · 1893 阅读 · 0 评论 -
【数值分析】乘幂法,matlab实现
一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。每次乘完之后要规范化,防止上溢或下溢。要保证矩阵最大特征值只有一个,有。的特征值入,及其对应的特征向量。在下面,所以近似最大特征值。特别适合于大型稀疏矩阵。个线性无关的特征向量。乘幂法matlab实现。求归一化后的初始向量。原创 2023-12-26 21:41:13 · 1744 阅读 · 0 评论