多模态融合与深度学习在股票趋势预测与量化交易中的应用【附代码】

  📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策

✨ 专业领域:

  • 数据挖掘与清洗

  • 大数据处理与存储技术

  • 机器学习与深度学习模型

  • 数据可视化与报告生成

  • 分布式计算与云计算

  • 数据安全与隐私保护


💡 擅长工具:

  • Python/R/Matlab 数据分析与建模

  • Hadoop/Spark 大数据处理平台

  • SQL数据库管理与优化

  • Tableau/Power BI 数据可视化工具

  • TensorFlow/PyTorch 深度学习框架

✅ 具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

在金融领域,尤其是股票市场,预测股票趋势和制定交易策略是投资者和金融机构面临的重大挑战。本文基于多模态融合技术,探讨了股票趋势预测与交易策略,旨在通过整合股票数值数据和股吧评论文本数据,提高预测的准确性和交易策略的有效性。

(1)多模态数据的整合与特征提取

多模态数据融合是本文研究的核心,其中涉及股票数值数据和股吧评论文本数据的整合。股票数值数据通过计算技术指标得到,而股吧评论文本数据则通过基于LERT-Text CNN-ATT的文本提取模块进行处理。LERT预训练模型用于将单条评论转化为向量,并提取不同层次的语义特征。Text CNN用于捕捉关键词ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值