📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策
✨ 专业领域:
-
数据挖掘与清洗
-
大数据处理与存储技术
-
机器学习与深度学习模型
-
数据可视化与报告生成
-
分布式计算与云计算
-
数据安全与隐私保护
💡 擅长工具:
-
Python/R/Matlab 数据分析与建模
-
Hadoop/Spark 大数据处理平台
-
SQL数据库管理与优化
-
Tableau/Power BI 数据可视化工具
-
TensorFlow/PyTorch 深度学习框架
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
在金融领域,尤其是股票市场,预测股票趋势和制定交易策略是投资者和金融机构面临的重大挑战。本文基于多模态融合技术,探讨了股票趋势预测与交易策略,旨在通过整合股票数值数据和股吧评论文本数据,提高预测的准确性和交易策略的有效性。
(1)多模态数据的整合与特征提取
多模态数据融合是本文研究的核心,其中涉及股票数值数据和股吧评论文本数据的整合。股票数值数据通过计算技术指标得到,而股吧评论文本数据则通过基于LERT-Text CNN-ATT的文本提取模块进行处理。LERT预训练模型用于将单条评论转化为向量,并提取不同层次的语义特征。Text CNN用于捕捉关键词ÿ