📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策
✨ 专业领域:
-
数据挖掘与清洗
-
大数据处理与存储技术
-
机器学习与深度学习模型
-
数据可视化与报告生成
-
分布式计算与云计算
-
数据安全与隐私保护
💡 擅长工具:
-
Python/R/Matlab 数据分析与建模
-
Hadoop/Spark 大数据处理平台
-
SQL数据库管理与优化
-
Tableau/Power BI 数据可视化工具
-
TensorFlow/PyTorch 深度学习框架
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)数据可携权的背景与意义
在数字经济快速发展的背景下,全球主要经济体认识到保护消费者信息和解决数据垄断的重要性,因此通过立法确立了数据可携权。这项权利允许用户获取其个人数据,并在不同服务提供商之间迁移这些数据,旨在促进市场竞争,鼓励创新,并赋予用户更多对自己数据的控制权。随着这一权利的确立,数据共享成为数字产业中一个关键的研究方向,因为它不仅影响到消费者的权益,还涉及到平台之间的竞争行为。
(2)构建动态博弈模型分析平台行为
基于数据可携权的视角,研究者们开始尝试构建两阶段动态博弈模型来模拟平台间的数据共享