强化学习系列(一):强化学习简介

本文介绍了强化学习的基本概念,包括agent、environment、state和action,强调了强化学习的特性:无监督者、延迟反馈和时序数据。此外,还探讨了强化学习问题中的agent-environment交互和state的定义,以及在完全可观测和部分可观测环境中的区别。最后,文章提到了agent的构成要素——policy、value function和model。
摘要由CSDN通过智能技术生成

一、强化学习是什么?

首先,我们思考一下学习本身,当一个婴儿在玩耍时可能会挥舞双手,左看右看,没有人来指导他的行为,但是他和外界直接通过了感官进行连接。感知给他传递了外界的各种信息,包括知识等。学习的过程贯穿着我们人类的一生,当我们开车或者说话时,都观察了环境,并执行一系列动作来影响环境。强化学习描述的是一个与环境交互的学习过程。

那么强化学习是如何描述这一学习过程的呢?以人开车为例,将人和车作为一个整体(agent),外界红绿灯、车道线等信息构成了环境(environment),然后人通过控制车辆向左、向右转弯或者直行的动作(action),影响了这个环境的状态(state),比如说前方有车,向右转弯后车道前没有车辆,这就说明车辆的动作影响了环境的状态。

但是,仅仅有了agent、environment、state和action还不够,需要有一个奖惩来指导agent的行动,这就是reward,比如车辆闯红灯会收到罚单。那么说到这里,大家一定很好奇:reward是如何指导强化学习的呢?首先我们要从强化学习的特性说起。

二、强化学习特性

强化学习作为机器学习的一种,免不了要被拿来和监督学习以及无监督学习比较。

首先,监督学习的特点是学习的数据都有标签(labels),即我们在学习之前就以及告知了模型什么样的state下采用什么样的action是正确的,简单说就是有个专门的老师(或者监督者)告诉算法,什么是对什么是错,通常用于回归,分类问题。无监督学习则恰恰相反,其所用于学习是数据没有label的,而是通过学习无标签的数据来探索数据的特性,通常用于聚类。

上文说到,强化学习是与环境实时交互并且会通过动作影响环境的,我们所采用的数据是没有一个正确的label明确告诉我们哪种action是好哪种是坏。但是我们提到了用一种特殊的奖惩机制来引导action,那就是reward。 reward并不向label一样,是在学习前就已存在与数据中,而是在当前时刻 t 的状态 st s t 下,执行了相应的动作 at a t , 才会在下一时刻(t+1时刻)获得一个对 t 时刻的reward Rt+1 R t + 1 ,细心的你一定发现了这好像存在延迟,对啦,reward 本来就是一种延迟奖励的机制,另外,有些action通过对环境state的影响,可以影响到好多步之后的reward, 因此强化学习的目标为最大化reward之和,而不是单步reward。

说了那么多,现在可以总结一下强化学习的特性啦!强化学习有如下特点:

  • 没有监督者,只有一系列的reward
  • 反馈不是及时的,而是延时的
  • 算法接受的数据是有时间顺序的
  • agent的动作可以对环境产生持续影响

对第三点而言,需要额外解释一下,在监督学习中,通常假设数据是通过独立同分布采样的,即假设所有的样本数据都是通过在同一个分布下(如高斯分布)独立采样获得,而这一点对于强化学习来说,明显是不大可能,因为强化学习是一种与环境交互的学习问题,这意味着state和action的时序性是很重要的,他所获得的一系列state很大程度上是有联系的,并不是独立存在的。比如用强化学习下棋的例子中,当前落子位置会影响后面的落子。

三、强化学习问题

强化学习定义的是一类问题,即强化学习问题,用于解决该类问题的方法我们称之为强化学习方法。第一节中,我们说到强化学习的几个组成部分:reward、agent、environment、state、action。第二节中,我们明确了强化学习的目的为选择action用以最大化所有未来的reward(reward之和),下面我们将分别介绍其他几个部分是如何影响强化学习工作的。

3.1 agent and environment

agent与environment的交互过程如下图所示,其中大脑表示agent,地球表示environment。
这里写图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值