今天在找bug的时候发现一个cv2.rectangle又一个跟我们常识惯性不太一致的地方:
一般我们非常熟悉这个函数的用法,就是在图上画矩形框,在跟踪里面就是画boundinig box:
cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → None
- 以前的想法:给img,和左上角坐标pt1和右下角坐标pt2,然后就能画出矩阵(所以也就很老实的按照格式要求输入)
- 现在的想法,pt1不一定是左上角坐标,pt2不一定是右下角坐标(看下面的例子)
试验代码:
import cv2
import numpy as np
img = cv2.imread('/home/lz/Videos/OTB100/Bird1/img/0001.jpg')
gt = np.loadtxt('/home/lz/Videos/OTB100/Bird1/groundtruth_rect.txt', delimiter=',')[0]
x1, y1, x2, y2 = gt[0], gt[1], gt[0]+gt[2], gt[1]+gt[3]
img = cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 1)
cv2.imshow('img', img)
cv2.imwrite('bird.png', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
这当然不出意外:
我们可以把剩下的三种情况都试一下,分别是
img = cv2.rectangle(img, (int(x1), int(y2)), (int(x2), int(y1)), (0, 255, 0), 1)
img = cv2.rectangle(img, (int(x2), int(y1)), (int(x1), int(y2)), (0, 255, 0), 1)
img = cv2.rectangle(img, (int(x2), int(y2)), (int(x1), int(y1)), (0, 255, 0), 1)
发现都是和第一种画出来的是一样的,所以有时候可能数据集给的框形式不对,但是你可视化出来看上去还是正确的,这就需要注意一下【当然你不能把类似(x1, x2, y1, y2)输入cv2.rectangle】
而且当你左上角的顶点有负值时,cv2.rectangle也还是可以画出来的,当然就是出视野就看不到了
谨以此提醒一下自己~~