人类与大模型的交互方式:只有提示词。
让大模型理解你的业务(知识增强==》RAG)
RAG的本质:构建一条高质量的提示词Prompt

AI工作的流程

如何优化RAG
1. 定位到问题所在,才能进行优化
2. 实际落地中,尽管有优化方式的总结,但却很难识别到异常问题的原因,无法做出有效的优化

3. 如何才能识别到异常问题——提前对整体的项目做结构化的分解、定义,设立评价标准权重等,针对每个环节的异常有预判以及影响性评估。

END
人类与大模型的交互方式:只有提示词。
让大模型理解你的业务(知识增强==》RAG)
RAG的本质:构建一条高质量的提示词Prompt

AI工作的流程

如何优化RAG
1. 定位到问题所在,才能进行优化
2. 实际落地中,尽管有优化方式的总结,但却很难识别到异常问题的原因,无法做出有效的优化

3. 如何才能识别到异常问题——提前对整体的项目做结构化的分解、定义,设立评价标准权重等,针对每个环节的异常有预判以及影响性评估。

END
您可能感兴趣的与本文相关的镜像
ACE-Step
ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

被折叠的 条评论
为什么被折叠?