Gnibuyek
码龄4年
  • 14,281
    被访问
  • 23
    原创
  • 110,574
    排名
  • 10
    粉丝
关注
提问 私信
  • 毕业院校: 广东外语外贸大学
  • 加入CSDN时间: 2018-10-30
博客简介:

weixin_43563178的博客

查看详细资料
  • 3
    领奖
    总分 237 当月 2
个人成就
  • 获得6次点赞
  • 内容获得4次评论
  • 获得12次收藏
创作历程
  • 9篇
    2022年
  • 14篇
    2021年
成就勋章
TA的专栏
  • 日常论文阅读专栏
    6篇
  • 异常检测
    5篇
  • SDN毕设学习专栏
    12篇
  • 虚拟机相关专栏
    3篇
  • 无处可去专栏
    1篇
  • nlp入门专栏
  • 会计实证专栏
    2篇
  • python专栏
    3篇
兴趣领域 设置
  • 人工智能
    nlp
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Ryu和Mininet测试过程Bug记录

1 Ryu运行shortest_forwarding.py:(1)更改/ryu/ryu/flags.py(2)更改/ryu/ryu/topology/switches.py,——在"class PortData(object)"的初始化中添加self.delay——在"class Switch(object):"里添加函数 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in.
原创
发布博客 2022.02.23 ·
87 阅读 ·
0 点赞 ·
0 评论

Ryu安装与配置

注:已提前在Mac os安装好VMware Fusion Ubuntu以及Mininet(Mininet安装)(1)更新git、pip等至最新版本——进入管理员身份:sudo -s——更新软件源:apt-get update如果显示有失败/遗漏:选择软件和更新,把源代码打勾并且选择其他站点,选择最佳服务器,重新在终端执行命令。如果显示配置了多次,按照提示路径打开并删除重复内容,如:gedit /etc/apt/sources.list——更新升级所有软件:apt-get upgrad
原创
发布博客 2022.02.17 ·
404 阅读 ·
0 点赞 ·
0 评论

Mac os安装mininet

1 安装VMware Fusion以及UbuntuVMware FusionUbuntu(1)运行VMware Fusion,若出现“找不到文件”的情况,右键打开虚拟机资源库,将有虚线方框的虚拟机系统删除即可。(2)按步骤进行,创建环境:——选择安装方法:创建自定虚拟机——选择操作系统:Linux-Ubuntu 64位——选择固件:UEFI(传统BIOS比较慢)——选择虚拟磁盘:新建虚拟磁盘——完成(3)安装Ubuntu系统:——进入CD/DVD(SATA..
原创
发布博客 2022.02.16 ·
403 阅读 ·
0 点赞 ·
0 评论

Fast and Reliable Anomaly Detection in Categorical Data

Minimum Description Length, MDL:最小描述长度摘要:对于金融、医疗、安全等领域的许多应用来说,发现大型多维数据库中的异常是一项至关重要的任务。本文介绍了一种利用基于模式压缩的识别异常的新方法——COMPREX。我们的方法找到一组简洁描述数据库规范的字典,将那些与规范不同的点标记为异常点,具有较高的压缩代价。我们的方法具有四个关键特征:(1)它是无参数的,它直接从数据构建字典,不需要用户指定参数如距离函数或密度和相似度阈值;(2)它具有通用性,它适用于广泛的复杂数据库,包括图
原创
发布博客 2022.02.14 ·
575 阅读 ·
0 点赞 ·
0 评论

Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation

Graph-level anomaly detection, GAD:图级异常检测摘要:GAD是指与其他图相比,检测出结构和/或节点特征异常的图。GAD的挑战之一是设计出能够检测局部和全局异常的图表示,即分别在其细粒度(节点级)或整体(图级)属性上异常的图。为了解决这一问题,作者提出了一种新的深度异常检测方法,该方法通过对图和节点表示的联合随机蒸馏来学习丰富的全局和局部正常模式信息。随机蒸馏是通过训练一个GNN来预测另一个具有随机初始化网络权值的GNN。在来自不同领域的16个真实世界的图数据集上进行的大
原创
发布博客 2022.01.24 ·
2020 阅读 ·
1 点赞 ·
0 评论

A feature selection method via analysis of relevance, redundancy, and interaction

mutual information feature selection, MIFS:互信息特征选择Smymetrical uncertainty, SUFast Correlation-Basd Filter Solution, FCBF:基于相关性快速过滤的特征选择算法Conditional Mutual Information Maximization, CMIM:条件互信息最大化Joint Mutual Information Maximiza, JMIM:联合互信息最大化Nor
原创
发布博客 2022.01.22 ·
505 阅读 ·
1 点赞 ·
2 评论

Networkx库使用记录

1 基本的图操作import network as nximport matplotlib.pyplot as plt建立空图# 无向图graph = nx.Graph()# 有向图graph = nx.DiGraph()添加节点# 单个节点graph.add_node('a')# 点集合graph.add_nodes_from(['1','2'])graph.add_nodes_from(range(1, nodes_count+1))# 输出所有节点pri
原创
发布博客 2022.01.16 ·
617 阅读 ·
0 点赞 ·
0 评论

论文阅读八:SDN 交换机转发规则 TCAM 存储优化综述

摘要:SDN将传统网络的控制平面和数据平面解耦,通过控制平面的控制器灵活地对网络进行管理,目前应用最广泛的控制协议是OpenFlow。三态内容寻址存储器(TCAM)查找速度快、支持三态掩码存储,在SDN网络中应用广泛.但TCAM成本高、功耗大,并且在存储含有范围字段匹配域的规则时候存在范围膨胀问题,因此交换机中可存储的转发规则数量,尤其是匹配域的数量和类型都比较多的OpenFlow规则数目非常有限,这成为约束SDN网络大规模扩展和应用的瓶颈。研究机构从不同角度提出了针对SDN中交换机转发规则的TCAM存储优
原创
发布博客 2022.01.14 ·
3449 阅读 ·
0 点赞 ·
0 评论

风险投资VC对ESG指标的影响

待定:是否需要数据标准化、异常值处理、模型单一#TODO:(1)修改开题报告(1.14前完成)(2)将数据集完善为2010-2020期间(1.20前完成)(3)控制变量较少、单一控制变量实验(4)稳健性检验python文件:/实证/OLS_test.pyimport numpy as npimport pandas as pdimport statsmodels.api as smfrom sklearn import preprocessingdataset =..
原创
发布博客 2022.01.11 ·
417 阅读 ·
0 点赞 ·
0 评论

网络数据集网站FYI

ODDS – Outlier Detection DataSetsAMinerNetwork Data Repository | The First Interactive Network Data RepositoryStanford Large Network Dataset CollectionNetworksDatasets | LINQS (ucsc.edu)Outlier Detection Data Sets (elki-project.github.io)GitH
原创
发布博客 2021.12.30 ·
88 阅读 ·
0 点赞 ·
0 评论

基于拓扑结构和属性信息深度结合的异常检测方法

The deep fusion of topological structure and attribute information for anomaly detection in attributed networksunsupervised Anomaly Detection method in the attributed networks based on Random Walking AutoEncoder,RW2AEAD:基于属性网络的随机游走自编码器无监督异常检测方法摘要:基于属性.
原创
发布博客 2021.12.28 ·
769 阅读 ·
1 点赞 ·
0 评论

论文阅读七:面向软件定义网络的负载均衡智能路由策略

名词解释:Machine Learning Aided Load Balance Routing Scheme Considering Queue Utilization, MLQU:考虑队列利用率的基于机器学习的负载均衡路由算法QoS-oriented Adaptive Routing Scheme Based on Deep Reinforcement Learning, QAR:面向QoS的基于深度强化学习的自适应路由算法Principal Component Analysis, PCA:
原创
发布博客 2021.12.19 ·
305 阅读 ·
1 点赞 ·
1 评论

Hybrid-Order Anomaly Detection on Attributed Networks

基于属性网络的混合阶异常检测名词解释:Hybrid-Order Graph Attention Network, HO-GAT:混合阶图注意力网络摘要:基于属性网络的异常检测近年来收到了越来越多的关注。现有的检测方法大多只检测异常节点而不能检测异常子图。文章定义了一个新的基于属性网络的混合阶异常检测问题,以同时检测异常节点和子图。为此,提出一种新的深度学习模型——混合阶图注意力网络HO-GAT,该模型可以同时检测属性网络中的异常节点和motif实例。为了模拟节点和motif实例之间的相互影响,将
原创
发布博客 2021.12.14 ·
281 阅读 ·
0 点赞 ·
0 评论

论文阅读六:软件定义网络中基于Q-学习的负载均衡算法

名词解释:Q-learning Load Balance, QLLB:基于Q-学习的负载均衡算法Link Layer Discovery Protocol, LLDP:链路层发现协议摘要:针对SDN的负载均衡问题,为使网络的资源分配更加合理,防止网络拥塞,设计了一种基于 Q-学习的负载均衡( Q-learning Load Balance,QLLB) 算法,可根据网络环境自行作出决策,避 免 网 络 拥 塞,实现网络资源的合理分配。与最短路径算法Dijkstra、蚁群算法进行的性能对比结果表明,
原创
发布博客 2021.12.11 ·
414 阅读 ·
0 点赞 ·
1 评论

论文阅读五:基于软件定义网络的数据中心自适应多路径负载均衡算法

“摘要:针对传统多路径负载均衡算法无法有效地感知网络的运行状态、不能综合考虑链路的实时传输状态以及大多数算法缺少自适应性的问题,基于SDN的集中控制和全网管控思想,提出一种基于蜘蛛猴优化的SDN自适应多路径负载均衡算法(SMO-LBA)。首先,利用数据中心网络的感知能力来获取多路径的实时链路状态信息;然后,利用蜘蛛猴算法的全局探索和局部开采能力将链路空闲率作为每条路径的适应度值,并引入自适应权重对路径进行动态评估及更新;最后,寻找数据中心网络中链路占用率最小的路径,确定其为最优转发路径。选用胖树拓扑在Min
原创
发布博客 2021.12.04 ·
225 阅读 ·
0 点赞 ·
0 评论

Latex格式合集

csdn公示格式
原创
发布博客 2021.12.02 ·
166 阅读 ·
0 点赞 ·
0 评论

基于数据挖掘的内部控制信息披露违规预警与防范

Early Warning and Prevention of non-Compliance of Internal Control Information Disclosure based on data Mining摘要:高质量的内控信息披露可以促进资本市场的健康发展。论文选择2017年沪深A股上市的公司为研究对象,选取公司财务、公司治理、投资者保护、市场和执行特征及激励,结合财务与非财务指标建立预警指标体系;并使用贝叶斯分类、逻辑回归、决策树和K近邻学习来预测内部控制信息披露违规。研究表明,经过特
原创
发布博客 2021.11.30 ·
579 阅读 ·
0 点赞 ·
0 评论

论文阅读四:基于流分类的数据中心网络负载均衡机制

名词解释:Utilization-aware Load-balancing based on Flow Classification, ULFC:基于流分类的数据中心网络负载均衡机制Equal-Cost Multi-Path, ECMPRound Trip Time, RTT:网络往返时间Exponentially Weighed Moving Average, EWMA:指数加权移动平均“摘要:为充分利用数据中心网络的多路径带宽,现有研究多采用基于链路感知的负载均衡算法,在动态获取全局
原创
发布博客 2021.11.26 ·
851 阅读 ·
0 点赞 ·
0 评论

论文阅读三:基于改进人工蜂群算法的SDN负载均衡策略研究

名词解释:Artificial Bee Colony Algorithm, ABC:人工蜂群算法Load balancing algorithm based on improved artificial bee colony algorithm, IALB:基于改进的人工蜂群算法的负载均衡算法Load balancing algorithm based on flow table resource and controller resource, FCLB:基于流表资源和控制器资源的负载均衡算法
原创
发布博客 2021.11.21 ·
524 阅读 ·
0 点赞 ·
0 评论

服务于离群点检测的无监督特征选择值-特征层次耦合模型

名词解释:Coupled Unsupervised Feature Selection, CUFS:耦合无监督特征选择"Abstract—Proper feature selection for unsupervised outlier detection can improve detection performance but is very challenging due to complex feature interactions, the mixture of relevant feat
原创
发布博客 2021.11.16 ·
676 阅读 ·
1 点赞 ·
0 评论
加载更多