基于yolov8的生猪姿态,行为检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

  更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

基于yolov8的生猪姿态,行为检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于yolov8的生猪姿态,行为检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,GUI界面和各种模型指标(准确率、精确率、召回率等)等。

GUI界面由pyqt5设计实现,可用笔记本摄像头或者外接USB摄像头

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境-CSDN博客

(二)项目介绍

1. 模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练与验证,即运行train.py文件 

第三步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集 

​​​​

部分数据展示: 

​​

3.GUI界面(技术栈:pyqt5+python) 
a.GUI初始界面

b.图像检测界面

c.视频或摄像实时检测界面 

4.模型训练和验证的一些指标及效果

 

(三)代码

由于篇幅有限,只展示核心代码

    def upload_img(self):
        """上传图片"""
        # 选择录像文件进行读取
        self.comboBox.setDisabled(False)
        self.pushButton_4.setEnabled(False)
        # 上传图像
        fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg')
        if fileName:
            self.file_path = fileName
            """检测图片"""
            org_path = self.file_path
            # 目标检测
            t1 = time.time()
            # 图像检测
            results = self.model.predict(source=org_path, imgsz=self.output_size, conf=self.conf_threshold)[0]
            names = results.names
            t2 = time.time()
            self.label_6.setText('{:.3f} s'.format(t2 - t1))
            now_img = results.plot()
            # 调整图像大小
            self.resize_scale = self.output_size / now_img.shape[0]
            im0 = cv2.resize(now_img, (0, 0), fx=self.resize_scale, fy=self.resize_scale)
            cv2.imwrite("images/tmp/single_result.jpg", im0)
            # 自适应图像大小
            self.label_3.setScaledContents(True)
            # 显示图像
            self.label_3.setPixmap(QPixmap("images/tmp/single_result.jpg"))
            # 获取位置信息
            location_list = results.boxes.xyxy.tolist()
            location_list = [list(map(int, e)) for e in location_list]
            # 获取类别信息
            cls_list = results.boxes.cls.tolist()
            cls_list = [int(i) for i in cls_list]
            # 获取置信度信息
            conf_list = results.boxes.conf.tolist()
            conf_list = ['%.2f %%' % (each * 100) for each in conf_list]
            # 目标总数
            total_nums = len(location_list)
            self.label_11.setText(str(total_nums))
            choose_list = ['全部']
            target_names = [names[id] + '_' + str(index) for index, id in enumerate(cls_list)]
            choose_list = choose_list + target_names
            # 复合框信息
            self.comboBox.clear()
            self.comboBox.addItems(choose_list)

            self.results = results
            self.names = names
            self.cls_list = cls_list
            self.conf_list = conf_list
            self.location_list = location_list
            
            # 显示目标框
            if total_nums >= 1:
                # 渲染类别和置信度信息
                self.label_16.setText(names[cls_list[0]])
                self.label_15.setText(str(conf_list[0]))
                #   默认显示第一个目标框坐标
                #   设置坐标位置值
                self.label_13.setText(str(location_list[0][0]))
                self.label_19.setText(str(location_list[0][1]))
                self.label_21.setText(str(location_list[0][2]))
                self.label_23.setText(str(location_list[0][3]))
            else:
                # 清空显示框
                self.label_16.setText(' ')
                self.label_15.setText(' ')
                self.label_13.setText(' ')
                self.label_19.setText(' ')
                self.label_21.setText(' ')
                self.label_23.setText(' ')

(四)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,GUI界面和各种模型指标等 

整个项目包含全部资料,一步到位,省心省力

若项目使用过程中出现问题,请及时交流!

### 回答1: 数据集VOC是一个用于研究开发目标检测算法的公共数据集。该数据集包含2856张图像相应的标注文件。这些图像中包含了的不同姿势、大小颜色,以及各种不同的背景场景。这使得这个数据集成为目标检测算法研究的有力支持。 研究人员可以利用这个数据集训练测试他们的目标检测算法,并比较其结果,并可以进一步优化算法以提高其性能。这个数据集可以在各种不同的应用场景中使用,例如智能农业中的自动化识别、精准养殖等。 该数据集的存在使得研究人员能够更好地了解的性状特征,从而更好地开发针对这种动物的目标检测算法。随着数据量的增长,这个数据集将变得越来越有力,将成为未来研究的一个标准基准数据集。 ### 回答2: 数据集voc是一种用于图像识别目标检测数据集,包含了2856张图像。这个数据集是通过对大量的图片进行采集标注得到的。 这个数据集的目的是用于研究开发的识别检测算法,以帮助农业生产的管理。研究人员可以利用这个数据集进行算法的训练评估,以提高的识别性能检测准确度。 在这个数据集中,每张图像都有一个对应的注释文件,用于说明图像中的位置类别。注释文件通常包含的边界框类别标签等信息。研究人员可以通过分析处理这些图像注释数据,训练出能够自动识别检测的算法模型。 使用这个数据集可以帮助农民养殖场管理者更好地监控的健康状况行为,及时发现异常情况。同时,研究人员还可以利用这个数据集进行的种类分类年龄估计等研究工作。 总之,数据集voc-2856张是一个非常有价值的资源,可以用于的识别检测算法的研究开发。通过利用这个数据集,我们可以提高农业生产的效率,改善的管理养殖条件。 ### 回答3: 数据集是一种用于机器学习计算机视觉研究的数据集,其中包含了2856张图像。这些图像的目的是为了帮助研究人员开发出能够自动识别分类的算法模型。 数据集中的每张图像都标记有关键点、边界框分类信息。关键点是指身体上的一些特殊点,比如眼睛、耳朵等,这些特殊点的标记可以帮助模型更好地理解分析姿态形态。边界框是用矩形框围住的方法,通过该框模型可以更准确地定位图像中的位置。分类信息是指的类别标签,每张图像都被分为不同的类别,例如母、公、小等。这些标记信息对于训练模型非常重要。 数据集中的图像来自不同角度背景下的的照片,包括了不同品种年龄的。通过使用这些多样性的图像,研究人员可以训练出更具鲁棒性通用性的检测识别模型。此外,这些数据集还可以用于研究行为、生活习性以及相关的农业应用,如疫病监测、养殖管理等。 综上所述,数据集是一个有着2856张图像数据集,其中每张图像都包含了关键点、边界框分类信息。这些数据将对机器学习计算机视觉研究领域产生积极的影响,帮助开发能够自动识别分类的算法模型,并且对农业养殖行业有着广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值