OpenCV 图像清晰度评价(相机自动对焦)

相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。


相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。


图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。


这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。


Tenengrad梯度方法


Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
Mat imageSource = imread(“2.jpg”);
Mat imageGrey;

cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel;
Sobel(imageGrey, imageSobel, CV_16U, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>);

<span class="hljs-comment">//图像的平均灰度</span>
<span class="hljs-keyword">double</span> meanValue = <span class="hljs-number">0.0</span>;
meanValue = mean(imageSobel)[<span class="hljs-number">0</span>];

<span class="hljs-comment">//double to string</span>
<span class="hljs-built_in">stringstream</span> meanValueStream;
<span class="hljs-built_in">string</span> meanValueString;
meanValueStream &lt;&lt; meanValue;
meanValueStream &gt;&gt; meanValueString;
meanValueString = <span class="hljs-string">"Articulation(Sobel Method): "</span> + meanValueString;
putText(imageSource, meanValueString, Point(<span class="hljs-number">20</span>, <span class="hljs-number">50</span>), CV_FONT_HERSHEY_COMPLEX, <span class="hljs-number">0.8</span>, Scalar(<span class="hljs-number">255</span>, <span class="hljs-number">255</span>, <span class="hljs-number">25</span>), <span class="hljs-number">2</span>);
imshow(<span class="hljs-string">"Articulation"</span>, imageSource);
waitKey();

}


使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。








Laplacian梯度方法:


Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
Mat imageSource = imread(“1.jpg”);
Mat imageGrey;

cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat imageSobel;

Laplacian(imageGrey, imageSobel, CV_16U);
<span class="hljs-comment">//Sobel(imageGrey, imageSobel, CV_16U, 1, 1);</span>

<span class="hljs-comment">//图像的平均灰度</span>
<span class="hljs-keyword">double</span> meanValue = <span class="hljs-number">0.0</span>;
meanValue = mean(imageSobel)[<span class="hljs-number">0</span>];

<span class="hljs-comment">//double to string</span>
<span class="hljs-built_in">stringstream</span> meanValueStream;
<span class="hljs-built_in">string</span> meanValueString;
meanValueStream &lt;&lt; meanValue;
meanValueStream &gt;&gt; meanValueString;
meanValueString = <span class="hljs-string">"Articulation(Laplacian Method): "</span> + meanValueString;
putText(imageSource, meanValueString, Point(<span class="hljs-number">20</span>, <span class="hljs-number">50</span>), CV_FONT_HERSHEY_COMPLEX, <span class="hljs-number">0.8</span>, Scalar(<span class="hljs-number">255</span>, <span class="hljs-number">255</span>, <span class="hljs-number">25</span>), <span class="hljs-number">2</span>);
imshow(<span class="hljs-string">"Articulation"</span>, imageSource);
waitKey();

}


用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:








方差方法:


方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。


对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

int main()
{
Mat imageSource = imread(“2.jpg”);
Mat imageGrey;

cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
Mat meanValueImage;
Mat meanStdValueImage;

<span class="hljs-comment">//求灰度图像的标准差</span>
meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
<span class="hljs-keyword">double</span> meanValue = <span class="hljs-number">0.0</span>;
meanValue = meanStdValueImage.at&lt;<span class="hljs-keyword">double</span>&gt;(<span class="hljs-number">0</span>, <span class="hljs-number">0</span>);

<span class="hljs-comment">//double to string</span>
<span class="hljs-built_in">stringstream</span> meanValueStream;
<span class="hljs-built_in">string</span> meanValueString;
meanValueStream &lt;&lt; meanValue*meanValue;
meanValueStream &gt;&gt; meanValueString;
meanValueString = <span class="hljs-string">"Articulation(Variance Method): "</span> + meanValueString;

putText(imageSource, meanValueString, Point(<span class="hljs-number">20</span>, <span class="hljs-number">50</span>), CV_FONT_HERSHEY_COMPLEX, <span class="hljs-number">0.8</span>, Scalar(<span class="hljs-number">255</span>, <span class="hljs-number">255</span>, <span class="hljs-number">25</span>), <span class="hljs-number">2</span>);
imshow(<span class="hljs-string">"Articulation"</span>, imageSource);
waitKey();

}


方差数值随着清晰度的降低逐渐降低:







在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值