(matlab实现)sigmoid函数和tanh函数以及ReLU函数

1. logsig函数即是logistic Regression(逻辑回归)中的sigmoid函数。

logsig函数表达式为:

matlab实现:

figure('NumberTitle', 'off', 'Name', 'Sigmoid函数');
x=-10:0.1:10;
y= 1 ./ (1 + exp(-x));
plot(x,y);
xlabel('X轴');ylabel('Y轴');%坐标轴表示对象标签
grid on;%显示网格线
axis on;%显示坐标轴
axis([-8,8,0,1]);%x,y的范围限制
title('Sigmoid函数');

笛卡尔坐标图(直角坐标):

 

2. tansig(tanh)函数表达式:

matlab实现:

figure('NumberTitle', 'off', 'Name', 'Tanh函数');
x=-5:0.1:5;
y=2./(1+exp(-2*x))-1;
plot(x,y);
xlabel('X轴');ylabel('Y轴');%坐标轴表示对象标签
grid on;%显示网格线
axis on;%显示坐标轴
axis([-5,5,-1,1]);%x,y的范围限制
title('Tanh函数');

笛卡尔坐标图:

3. ReLU激活函数ReLU = max(0, x);

源码;

figure('NumberTitle', 'off', 'Name', 'ReLU函数');
x=-5:0.1:5;
y=max(0,x);
plot(x,y);
xlabel('X轴');ylabel('Y轴');%坐标轴表示对象标签
grid on;%显示网格线
axis on;%显示坐标轴
axis([-5,5,-5,5]);%x,y的范围限制
title('ReLU函数');

Sigmoid函数Matlab中有多种实现方法。一种方法是使用Matlab自带的logistic函数,可以通过以下代码实现: ```matlab x = -10:0.01:10; y = 1./(1+exp(-x)); plot(x,y,'r','linewidth',1.5); xlabel('x') ``` 这段代码会生成一个以x为自变量,以sigmoid函数为因变量的图像。\[1\] 另一种方法是使用泰勒级数展开法实现sigmoid函数。你可以通过点击以下链接下载一个包含相关代码的压缩文件:\[2\]。解压缩后,你会得到四个.m文件。其中,sigmoid_hw.m是主要的实现函数sigmoidTaylor.m是计算sigmoid函数的泰勒展开系数的方法。你可以使用test.m文件进行测试,buildRefVal.m文件用于计算当x=n*ln2时的结果。这些文件提供了一个实现sigmoid函数的完整的Matlab代码。\[2\] 此外,你还可以参考一篇关于sigmoid函数特性及硬件实现方法的文章,其中包含了Matlab代码的实现讲解。\[3\] #### 引用[.reference_title] - *1* [Matlba绘制Logistic函数特殊形式的sigmoid函数图像(含程序)](https://blog.csdn.net/weixin_50892810/article/details/126784003)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Sigmoid函数的特性及硬件实现方法--含matlab代码及讲解](https://blog.csdn.net/qq_35721810/article/details/85320293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拦路雨g

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值