最大似然估计:
前提1:一定量样本
前提2:已知概率分布模型
结果:最大化类似当前分布的估计,最大化当前事件发生的概率(如从盒子中取出小球的概率)
一个在已知观察结果(即样本)和给定概率分布模型的基础上,估计概率分布模型的参数,并使得在该参数下,生成这个已知样本的可能性最大的方法。(条件:样本+概率分布模型,结果:最可能接近已知样本)
简单描述:最大似然估计就是去找参数估计值,使得已经观察到的样本值发生概率最大。
求解步骤:
step1:根据设定概率模型,写出联合概率形式的似然函数
step2: 对似然函数取对数,并整理
step3:求导数或偏导数,并赋值为0
step4:求解方程
参考网站:https://www.sohu.com/a/208191273_697750
伯努利分布:
(要么有,要么没有,就是二项分布)
逻辑回归:
为什么损失函数使用对数形式?根据极大似然估计的的概念演化过来的https://blog.csdn.net/saltriver/article/details/63683092
1)模型:
2)损失函数: