poj1463 Strategic game

题目链接:http://poj.org/problem?id=1463

题目大意:给定一棵树,怎样使得占据最少的节点能够监视所有的边

思路:(1)最小点覆盖,二分图匹配;(2)树形DP;这里用树形DP做:用dp[i][0]来表示该点没有放兵,以这个点为根的子树所需的最少兵数;用dp[i][1]来表示该点有放兵,以这个点为根的子树所需的最少兵数。

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#define maxn 100000
using namespace std;
int dp[maxn][2]; //用DP[I][0]来表示该点没有放兵,以这个点为根的子树所需的最少兵数。
int n;           //用DP[I][1]来表示该点有放兵,以这个点为根的子树所需的最少兵数。
int root;
vector<int>node[maxn];
void init()
{
 int u,v,num;
 root = -1;
 for(int i=0;i<=n;i++)
 node[i].clear();

 for(int i=0;i<n;i++)
 {
  scanf("%d:(%d)",&u,&num);  //记住这种输入读取方式
  if(root==-1) root = u;
  while(num--)
  {
  cin>>v;
  node[u].push_back(v);  //向量添加点的格式
  }
   }
}

int solve(int fa)
{
 dp[fa][0]=0;dp[fa][1]=1;
 for(int i=0;i<node[fa].size();i++)
 {
  int son = node[fa][i];
  solve(son);           //访问的时候,因为要先知道儿子的信息,所以类似于后续遍历
  dp[fa][0]+=dp[son][1];  //如果该父亲不放,那么儿子必须放
  dp[fa][1]+=min(dp[son][0],dp[son][1]); //如果该父亲放,儿子在放和不放之间选择最小的

 }
 return min(dp[fa][0],dp[fa][1]);
}

int main()
{
 while(cin>>n)
 {
  init();
  cout<<solve(root)<<endl;
 }
 return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值