Windows搭建ByteTrack多目标跟踪算法

源码地址:https://github.com/ifzhang/ByteTrack

我的cuda版本为10.2,先安装pytorch

pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html

下载源码

git clone https://github.com/ifzhang/ByteTrack.git
cd ByteTrack
pip install -r requirements.txt
python setup.py develop

pip install -r requirements.txt过程中会把我的torch、torchvision自动卸掉,重新安装一次pytorch!

执行python setup.py develop报错UnicodeDecodeError: 'gbk' codec can't decode byte

编辑setup.py,将

with open("README.md", "r") as f:

改为:

with open("README.md", "r",encoding='utf-8') as f:

安装pycocotools

pip install cython

安装cython_bbox

使用pip install cython_bbox安装会报错

从官网下载cython_bbox库,在Windows本地进行编译,具体步骤如下:

①首先从官网下载cython_bbox库,进入官网后,单击Download files,再单击cython_bbox-0.1.3.tar.gz开始下载。下载地址:cython-bbox · PyPI

 

②将下载的cython_bbox-0.1.3.tar.gz解压,解压后打开文件夹,右击setup.py以记事本的方式打开,将第31行

extra_compile_args=['-Wno-cpp']

替换为:

extra_compile_args={'gcc': ['/Qstd=c99']}

然后保存。

③以命令行的方式进入cython_bbox-0.1.3目录,执行命令:

python setup.py build_ext install

下载模型

下载模型,并放于pretrained目录下,若文件夹不存在,则新建一个!

效果测试

python tools/demo_track.py video -f exps/example/mot/yolox_x_mix_det.py -c pretrained/bytetrack_x_mot17.pth.tar --fp16 --fuse --save_result

如果出现Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.报错问题,编辑demo_track.py文件,增加以下代码:

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

 

若没有报错,则可在YOLOX_outputs目录下找到生成视频! 

摄像头实时跟踪

python tools/demo_track.py webcam -f exps/example/mot/yolox_m_mix_det.py -c pretrained/bytetrack_m_mot17.pth.tar --fp16 --fuse --save_result

建议选择bytetrack_m_mot17.pth.tar模型,基本0延迟!

尝试直接调用海康威视摄像头的rtsp视频流进行实时识别,但同局域网下延迟却很大,不知原因为何,正在解决!

参考:

解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.报错问题_码农小C的博客-CSDN博客_libiomp5md.dll

Windows上遇到错误之No module named 'cython_bbox'_慕课手记 (imooc.com) 

多目标跟踪评价指标 - 知乎 (zhihu.com) 

目标跟踪之 MOT 经典算法:ByteTrack 算法原理以及多类别跟踪_kuweicai的博客-CSDN博客_多类别多目标跟踪

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值