深度学习基础概念理解

1、全连接层就是线性层。

2、全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。

3、SVM一般指支持向量机,是一类按监督学习方式对数据进行二元分类的广义线性分类器,也可改为多分类。

4、使用SVM也可代替CNN网络的全连接层,即CNN提取特征后利用SVM进行分类,如图所示:

CNN有两个卷积层,两个全连接层,其中卷积层卷积核大小为5 * 5,步长为1,池化层卷积核大小为2 * 2,第一个全连接层输出h_fc1转化为特征向量输入SVM。 feature map大小变化如表所示:

5、CNN架构大部分时间都在做提取特征的任务,而最后一步的(Softmax)分类算法其实是很简单,和之前的机器学习并无二致,两者(特征提取+分类算法)一起构成了完整的端到端模型。

6、SVM是线性分类器,softmax是非线性分类器。

直观理解,线性分类器就是1根或多根直线对空间进行切割分类:

非线性分类器模型分界面可以是曲面或者是超平面的组合。

 7、线性分类器和非线性分类器比较

线性分类器可解释性好,计算复杂度较低,判别简单、易实现、且需要的计算量和存储量小,不足之处是模型的拟合效果相对弱些。

非线性分类器效果拟合能力较强,不足之处是数据量不足容易过拟合、计算复杂度高、可解释性不好。

常见的线性分类器有:LR,贝叶斯分类,单层感知机,线性回归,SVM(线性核)等。

常见的非线性分类器:决策树、RF、GBDT、多层感知机

SVM(支持向量机)

SVM的优点:

1.在高维中表现良好。在现实世界中有无限维度(不仅仅是2D和3D)。例如,图像数据、基因数据、医学数据等具有更高的维数,支持向量机在这方面是有用的。基本上,当特征/列的数量较多时,SVM表现良好。

2.类可分离时的最佳算法(当两个类的实例可以通过直线或非线性轻松分隔时)。为了描述可分离的类,让我们举个例子(这里以线性分离为例,通过绘制抛物线等,类也可以是非线性可分离的)。在第一个图中,您无法轻易分辨X是属于类1还是类2,但是在情况2中,您可以轻易判断出X属于类2。因此,在第二种情况下,类是线性可分离的。

3. 离群值的影响较小。

4. SVM适用于极端情况下的二元分类。

SVM的缺点:

1. 慢:对于较大的机器学习数据集,需要大量时间来处理。

2. 重叠类的性能不佳:重叠类的情况下效果不佳。

3. 选择适当的超参数很重要:这将允许足够的泛化性能。

4. 选择适当的核函数可能比较麻烦。

SVM的应用范围:

Bag of words应用程序(许多特征和列),语音识别数据,图像分类(非线性数据),医学分析(非线性数据),文本分类(许多特征)。

朴素贝叶斯

朴素贝叶斯的优点:

1.实时预测:速度非常快,可以实时使用。

2. 可通过大型数据集进行扩展。

3. 对无关特征不敏感。

4. 在朴素贝叶斯中可以有效地进行多类预测。

5. 具有高维数据的良好性能(特征数量很大)。

朴素贝叶斯的缺点:

1.特征的独立性不成立:朴素贝叶斯的基本假设是每个特征对结果做出独立且平等的贡献。但是,大多数情况下不满足此条件。

2. 糟糕的估算器:不要太认真看待预测的概率输出。

3. 训练数据应该很好地代表总体:如果没有一起出现类别标签和某个属性值(例如,class =“ No”,shape =“ Overcast”),则后验概率为零。因此,如果训练数据不能代表总体,那么朴素贝叶斯将无法很好地工作(通过平滑技术可以解决此问题)。

朴素贝叶斯的应用范围:

朴素贝叶斯可用于文本分类(可以预测多个类别,并且不介意处理不相关的特征)、垃圾邮件过滤(识别垃圾邮件)、情感分析(在社交媒体分析中识别正面和负面情绪),推荐系统(用户下一步将购买什么)。

逻辑回归

逻辑回归的优点:

1.易于实现

2. 有效

3. 不需要缩放特征:不需要缩放输入特征(也可以使用缩放特征,但是不需要缩放)。

3. 不需要调整超参数。

逻辑回归的缺点:

1.非线性数据(例如图像数据)性能不佳。

2. 具有不相关和高度相关的特征的性能较差(删除相似或相关的特征和不相关的特征)。

3. 不是很强大的算法,很容易被其他算法超越。

4. 高度依赖正确的数据表示。所有重要的变量/特性都应该被识别,这样才能很好地工作。

逻辑回归的应用范围:

最好是任何二元分类问题(它也可以执行多类分类,但最好是二元的)。如果您的输出类有两个结果,则可以使用它,例如癌症检测问题,客户借贷时是否违约,客户是否流失,电子邮件是否为垃圾邮件等。

随机森林

随机森林的优点:

1.随机森林可以去相关树。它选取训练样本,给每棵树一个特征子集(假设训练数据是[1,2,3,4,5,6],那么一棵树将得到训练数据子集[1,2,3,2,6,6])。注意,训练数据的大小保持不变,两个数据的长度都是6,在随机采样的训练数据中,2和6是重复的。每棵树都根据它的特征进行预测。在这种情况下,树1只能访问特性1、2、3和6,因此它可以根据这些特征进行预测。其他一些树会访问特征1、4、5,所以它会根据这些特征进行预测。如果特征高度相关,那么这个问题可以在随机森林中解决。

2. 减少误差:随机森林是一个决策树的集合。为了预测某一行的结果,随机森林从所有树中获取输入,然后预测结果。这保证了树的个体误差最小化,并减少了总体方差和误差。

3. 在不平衡数据集上的良好性能:它还可以处理不平衡数据中的错误(一个类占多数,另一个类占少数)。

4. 处理大量数据:它可以处理大量的数据与更高维度的变量。

5. 正确处理缺失的数据:它可以很好地处理缺失值。因此,如果模型中有大量丢失的数据,它也可以提供良好的结果。

6. 离群值的影响很小:由于最后的结果是通过查询许多决策树得出的,所以某些离群值的数据点不会对随机森林产生很大的影响。

7. 没有过度拟合的问题:在随机森林中,只考虑特征的一个子集,最终结果取决于所有的树。所以有更好的泛化能力和更少的过度拟合。

8. 有助于提取特征重要性(我们可以将其用于特征选择)。

随机森林的缺点:

1. 特征需要具有一定的预测能力,否则将无法正常工作。

2. 树木的预测需要特征不相关。

3. 出现为黑匣子:很难知道发生了什么。您最多可以尝试使用不同的参数和随机种子来更改结果和性能。

随机森林的应用范围:

信用卡违约(欺诈客户/非欺诈客户),识别患者,电子商务网站的推荐系统等。

决策树

决策树的优点:

1. 不需要归一化或缩放数据。

2. 处理缺失值:缺失值不会产生重大影响。

3. 易于向非技术团队成员解释。

4. 轻松可视化

5. 自动特征选择:不相关的特征不会影响决策树。

决策树的缺点

1. 容易过度拟合。

2. 对数据敏感。如果数据稍有变化,结果可能会在很大程度上变化。

3. 训练决策树需要更长的时间。

决策树的应用范围:

识别产品的买家,预测违约的可能性,哪一种策略可以使利润最大化,寻找成本最小化的策略,哪一种特性对吸引和留住客户最重要(是购物的频率,是频繁的折扣,还是产品组合等),机器故障诊断(持续测量压力、振动和其他测量,并在故障发生前进行预测)等。

XGBoost

XGBoost的优点:

1. 所需的特征工程较少(不需要数据缩放,数据归一化,也可以很好地处理缺失值)。

2. 可以发现特征的重要性(它输出每个特征的重要性,可用于特征选择)。

3. 离群值具有最小的影响。

4. 可以很好地处理大型数据集。

5. 良好的执行速度。

6. 出色的模型表现(在大多数Kaggle比赛中获胜)。

7. 不太容易过拟合。

XGBoost的缺点:

1. 解释困难,可视化困难。

2. 如果参数未正确调整,则可能过度拟合。

3. 由于存在太多超参数,因此难以调整。

XGBoost的应用领域:

可用于任何分类问题。如果特征太多、数据集太大、存在离群值和缺失值,并且不想进行太多特征工程,则XGBoost特别有用。它几乎赢得了所有比赛的胜利,因此这是解决任何分类问题时必须牢记的一种算法。

k-NN(K最近邻)

k-NN的优点:

1. 简单易懂,易于实现。

2. 没有关于数据的假设(例如,在线性回归的情况下,我们假设因变量和自变量线性相关,在朴素贝叶斯中,我们假设特征彼此独立,但是k-NN不对数据做任何假设)。

3. 不断扩展的模型:当暴露于新数据时,它会更改以适应新数据点。

4. 多类问题也可以解决。

5. 一个超级参数:在选择第一个超级参数时,K-NN可能需要一些时间,但剩下的参数是一致的。

k-NN的缺点:

1. 对于大型机器学习数据集,速度较慢。

2. 维度诅咒:在具有大量特征的机器学习数据集上效果不佳。

3. 必须对数据进行缩放。

4. 在不平衡数据上效果不佳。因此,在使用k-NN之前,要么欠采样多数类,要么过采样少数类,使得具有一个平衡的数据集。

5.对离群值敏感。

6.不能很好地处理缺失值。

k-NN的应用范围:

当机器学习数据集较小且特征数较少时,可用于任何分类问题,使得k-NN占用的计算时间较少。如果您不知道数据的形状以及输出和输入的关联方式(是否可以用直线,椭圆或抛物线等分隔类),则可以使用k-NN。

动作识别 (action recognition) : 是对每个输入视频进行分类,识别出视频中人物做出的动作。即输入视频序列,得到视频对应的类别;

时序动作检测 (temporal action detection) :任务的输入是一个未经裁剪的视频 (untrimmed video),即在这个视频里有些帧是没有动作发生的,因此需要检测出动作开始和结束的区间,并判断区间内动作的类别。即输入未经裁剪的视频序列,得到动作出现的区间和对应的类别;

时空动作检测 (spatio-temporal action detection) :相比于时序动作检测略有不同,时空动作检测不仅需要识别动作出现的区间和对应的类别,还要在空间范围内用一个包围框 (bounding box)标记出人物的空间位置。

各种机器学习分类算法的优缺点 (baidu.com)

CNN+SVM实现多分类_平凡的久月的博客

理解图神经网络:从CNN到GNN - 知乎 (zhihu.com)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度学习基础教程 PDF 是一本介绍深度学习基础知识和应用的教程资料。该教程以简明易懂的方式系统地介绍了深度学习的原理、算法和常用工具,是学习深度学习的入门指南。 这本教程首先从深度学习的基本概念开始讲解,包括神经网络结构、激活函数、前向传播和反向传播算法等。然后,教程详细介绍了深度学习中常用的模型,如卷积神经网络、循环神经网络和生成对抗网络,并对它们的结构和应用进行了深入解析。 在教程中,还介绍了一些深度学习的常用工具和框架,如TensorFlow和PyTorch。这些工具和框架提供了丰富的函数库和示例代码,方便读者理解和实践深度学习的内容。 教程的每一章都包含了理论知识的详细解释和丰富的实例代码,读者可以通过阅读教程和运行代码来加深对深度学习理解。此外,教程还提供了一些练习题和实战项目,读者可以通过完成这些任务来检验和巩固所学的知识。 总的来说,深度学习基础教程PDF 提供了一个全面且易于理解深度学习学习资源。无论是初学者还是已经有一定基础的人,通过阅读这本教程,都能够系统地学习和掌握深度学习的基本概念、原理和应用。 ### 回答2: 深度学习基础教程是一本关于深度学习的入门教材。这本教程为读者提供了深度学习的基本概念、算法和应用案例等方面的知识。教程的作者将复杂的理论和算法内容以简洁明了的方式进行了阐述,并提供了大量的示例代码和实战项目,有助于读者更好地理解和掌握深度学习基础知识。 这本教程的主要内容包括神经网络的基本原理、反向传播算法、卷积神经网络、循环神经网络、深度学习常用框架等。通过学习这些内容,读者可以了解深度学习的基本概念和算法,并能够使用常见的深度学习框架进行实际的应用开发。 该教程的特点之一是提供了大量的示例代码和实战项目。通过参考这些实例代码,读者可以学习如何使用Python等编程语言实现深度学习模型,并对深度学习算法的具体应用有更深入的理解。此外,实战项目的设计也能帮助读者将学到的知识应用到实际问题中,提高解决实际问题的能力。 总之,深度学习基础教程是一本实用性很强的深度学习教材,适合对深度学习感兴趣的初学者阅读。通过学习这本教程,读者可以系统地掌握深度学习的基本原理和算法,并且能够使用常见的深度学习框架进行实际开发。 ### 回答3: 深度学习基础教程 PDF 是一本关于深度学习入门的电子书籍。深度学习是一种机器学习方法,通过建立多神经网络来模拟人类大脑的工作原理,并用于解决各种复杂的问题。 这本教程以简明易懂的方式介绍了深度学习的基本原理和常用的技术。它涵盖了深度学习基础知识,包括神经网络的构建、激活函数的选择、损失函数的定义等。同时,该教程还介绍了一些经典的深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),以及它们在图像识别、自然语言处理等领域的应用。 通过学习这本教程,读者可以了解深度学习的基本概念和原理,并学会使用常见的深度学习工具和框架,如TensorFlow和PyTorch。此外,这本教程还提供了大量的实例和练习,帮助读者巩固所学知识,并通过实践掌握深度学习的应用技巧。 总而言之,深度学习基础教程 PDF 是一本详尽的入门资料,适合初学者快速了解和入门深度学习。无论是对于学术界的研究者,还是对于工业界的从业者,这本教程都提供了很好的学习资源,有助于开展相关的研究和应用工作。希望有兴趣的读者能够通过学习这本教程,掌握深度学习的基本原理和实践技巧。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值