跑通飞浆平台的MTMCT 跨镜跟踪示例

想跑通飞浆平台的MTMCT跨镜跟踪示例,真的是难上加难啊!

改了几处代码,可以顺利跑通了,特此记录:

第一处:不要拉主线的代码,改成

!git clone https://gitee.com/paddlepaddle/PaddleDetection.git -b release/2.3

第二处:报错IndexError: list index out of range

修改PaddleDetection/deploy/pptracking/python/mot/mtmct/postprocess.py文件,修改第142行

改成:

参考:MCMT多摄像头多目标跟踪效果复现_mtmc tracking 代码-CSDN博客 

LangChain是一种用于自然语言处理任务的预训练模型,它通常用于序列到序列(Seq2Seq)的生成任务中,比如机器翻译、文本摘要或对话系统等。LangChain模型基于Transformer架构,通过学习大量的文本数据,能够捕捉语言结构和上下文之间的关联。 通LangChain模型的基本步骤如下: 1. **加载模型**:首先,你需要安装相应的库(如Hugging Face的transformers),并根据模型提供者的文档加载预训练的LangChain模型。这通常涉及到从模型仓库下载模型权重。 2. **模型配置**:设置模型的输入和输出格式,例如,如果你要进行文本生成,可能需要定义一个开始序列(如“<start>”)和结束标记(如“<end>”)。 3. **输入处理**:将输入文本转换为模型所需的输入格式,这可能包括截断、填充或编码成tokens。 4. **前向传播**:通过调用模型的`generate`方法,传入起始序列并生成新的文本。这个过程会根据模型内部的注意力机制逐步生成下一个token的概率分布,并选择最高概率的token作为下一次的预测。 5. **结果解码**:当生成的文本遇到结束标记或者达到最大长度时,停止生成,然后将生成的tokens解码回原始的文本格式。 6. **评估与调整**:根据任务需求,你可以评估生成的文本的质量,并根据需要调整模型参数、生成策略或训练更多的自适应数据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值