基于Word2Vec的文本关键词抽取方法

9 篇文章 5 订阅

        大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。 可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。 没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。

        但是,为什么要将它作为语言模型来看呢? 抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。

        有心想了解这个系列的读者,有必要了解一下Word2Vec的数学原理。当然,Word2Vec出来已经有好几年了,介绍它的文章数不胜数,这里我推荐peghoty大神的系列博客: http://blog.csdn.net/itplus/article/details/37969519 为了方便读者阅读,我还收集了两个对应的PDF文件:

    word2vector中的数学原理详解.pdf https://spaces.ac.cn/usr/uploads/2017/04/2833204610.pdf

    Deep Learning 实战之 word2vec.pdf https://spaces.ac.cn/usr/uploads/2017/04/146269300.pdf

        其中第一个就是推荐的peghoty大神的系列博客的PDF版本。当然,英文好的话,可以直接看Word2Vec的原始论文:

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.

        简单来说,Word2Vec就是“两个训练方案+两个提速手段”,所以严格来讲,它有四个备选的模型。两个训练方案分别是CBOW和Skip-Gram。

        用通俗的语言来说,就是“周围词叠加起来预测当前词”(P(W_t|Context))和“当前词分别来预测周围词”(P(W_others|W_t)),也就是条件概率建模问题了;两个提速手段,分别是层次Softmax和负样本采样。层次Softmax是对Softmax的简化,直接将预测概率的效率从O(|V|)降为O(log2|V|),但相对来说,精度会比原生的Softmax略差;负样本采样则采用了相反的思路,它把原来的输入和输出联合起来当作输入,然后做一个二分类来打分,这样子我们可以看成是联合概率P(W_t,Context)和P(W_others,W_t)的建模了,正样本就用语料出现过的,负样本就随机抽若干。更多的内容还是去细看peghoty大神的系列博客比较好,我也是从中学习Word2Vec的实现细节的。

        最后,要指出的是,本系列所使用的模型是“Skip-Gram + 层次Softmax”的组合,也就是要用到P(W_others|W_t)这个模型的本身,而不仅仅是词向量。所以,要接着看本系列的读者,需要对Skip-Gram模型有些了解,并且对层次Softmax的构造和实现方式有些印象。

1.Word2Vec词向量表示

        众所周知,机器学习模型的输入必须是数值型数据,文本无法直接作为模型的输入,需要首先将其转化成数学形式。基于Word2Vec词聚类方法正是一种机器学习方法,需要将候选关键词进行向量化表示,因此要先构建Word2Vec词向量模型,从而抽取出候选关键词的词向量。

        Word2Vec是当时在Google任职的Mikolov等人于2013年发布的一款词向量训练工具,一经发布便在自然语言处理领域得到了广泛的应用。该工具利用浅层神经网络模型自动学习词语在语料库中的出现情况,把词语嵌入到一个高维的空间中,通常在100-500维,在新的高维空间中词语被表示为词向量的形式。与传统的文本表示方式相比,Word2Vec生成的词向量表示,词语之间的语义关系在高维空间中得到了较好的体现,即语义相近的词语在高维空间中的距离更近;同时,使用词向量避免了词语表示的“维度灾难”问题。

         就实际操作而言,特征词向量的抽取是基于已经训练好的词向量模型,词向量模型的训练需要海量的语料才能达到较好的效果,而wiki中文语料是公认的大型中文语料,本文拟从wiki中文语料生成的词向量中抽取本文语料的特征词向量。

2.代码执行步骤如下:

(1)运行get_vector.py读取样本源文件data.txt;

(2)获得源文件的分词文件,即data_result.txt,包括分词、去重、去停用词

(3)运行train_word2vec.py,训练词向量模型,得到data.model以及data.vector

(4)运行www.py,读取测试文本test_data.txt,然后就可以提取出对应的关键词

附上代码地址:https://github.com/baixiaoyanvision/keyextract_word2vec

  • 5
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 16
    评论
Word2Vec是一种用于获取词向量的工具,它可以通过训练模型将单词映射为多维向量表示。然后,可以使用这些向量来计算单词之间的相似性或进行其他自然语言处理任务,例如文本分类、情感分析和关键词抽取关键词抽取是指从给定文本提取最具代表性的单词或短语。在使用Word2Vec进行关键词抽取时,可以遵循以下步骤: 1. 对给定文本进行数据预处理操作,例如分词、词性标注、去重和去除停用词等。 2. 使用Word2Vec模型将文本中的每个词转换为向量表示。 3. 计算每个词的重要性得分,通常使用TF-IDF(词频-逆文档频率)等算法。 4. 根据得分排序,选择得分最高的词作为关键词。 具体步骤可能会因具体的关键词抽取方法而有所变化,但一般来说,这个过程可以帮助我们抽取出与给定文本内容相关且具有代表性的关键词。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [keyextract_word2vec:基于word2vec关键词提取](https://download.csdn.net/download/weixin_42134338/18581961)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [word2vec+KNN 关键词提取](https://blog.csdn.net/weixin_45422462/article/details/108542682)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [中文文本关键词抽取(TF-IDF、TextRank、word2vec)](https://blog.csdn.net/qq_38563206/article/details/120512777)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值