具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能
这个示例展示了如何使用EEGdenoiseNet基准数据集[1]和深度学习回归去除脑电图(EEG)信号中的眼电图(EOG)噪声。EEGdenoiseNet数据集包含4514个干净的EEG片段和3400个眼部伪迹片段,这些片段可以用来合成带有真实干净EEG的噪声EEG片段
这个示例使用干净和受EOG污染的EEG信号来训练一个长短期记忆(LSTM)模型以去除EOG伪迹。首先,将在原始输入信号上训练模型。然后,引入短时傅里叶变换(STFT)层,使模型在原始输入上提取时频特征进行训练。逆STFT层从去噪的STFT重构结果。使用时频特征特别是在信噪比(SNR)较低时可以提高性能。
EEGdeniseNet数据集包含4514个干净的EEG片段和3400个EOG片段,可用于生成三个数据集,用于训练、验证和测试深度学习模型。所有信号段的采样率为256Hz。实例为MATLAB语言。
% Download the data
datasetZipFile = matlab.internal.examples.downloadSupportFile("SPT","data/EEGEOGDenoisingData.zip");
datasetFolder = fullfile(fileparts(datasetZipFile),"EEG_EOG_Denoising_Dataset");
if ~exist(datasetFolder,"dir")
unzip(datasetZipFile,