干货 | 知识库全文检索的最佳实践

版权声明:本文为博主原创文章,未经博主允许不得转载。转载请务必加上原作者:铭毅天下,原文地址:blog.csdn.net/laoyang360 https://blog.csdn.net/wojiushiwo987/article/details/80616320

1、题记

这是stackoverflow上一篇精彩的问答。

原文不大好理解,我做了梳理+图解;

原文是ES早期版本,部分写法已不适用,所有DSL我在6.X上进行了重写和验证;

针对原文内容做了扩展。

2、知识库全文检索问题抛出

重新审视一个停滞不前的项目,并寻求建议,对数千个“旧”文档进行现代化改造,

最终期望效果:通过网络访问这些文档。
文档以各种格式存在,有些已经过时:
- .doc,
- PageMaker,
- 硬拷贝hardcopy (OCR),
- PDF

- ……

很多文档已经被转化成扫描版的PDF,之前我们认为PDF类型是最终的文档格式,现在看来,我们想听听建议(比如:xml是不是更好呢?)

核心需求点:

1、一旦所有文档都采用通用格式,我们希望通过网页界面提供其内容并提供搜索服务。

2、我们希望通过搜索,能够灵活地只返回整个文档的部分页面(我相信的Lucene / elasticsearch使这成为可能?!?)

3、如果所有文档是XML是否会更加灵活?

4、如何存储、在哪里存储XML?是直接存储在数据库中还是存储成文件系统中的文件?关于文档中的嵌入式图像/图表呢?

以上,希望得到回复。

注解:xml只是提问者的当时初步的理解。

3、精彩回复

我将推荐ElasticSearch,我们先解决这个问题并讨论如何实现它:

这有几个部分:

  • 从文档中提取文本以使它们可以索引(indexable),以备检索;
  • 以全文搜索形式提供此文本;
  • 高亮显示文档片段;
  • 知道文档中的哪些段落可用于分页;
  • 返回完整的文档。

ElasticSearch可以提供什么:

  • ElasticSearch(如Solr)使用Tika从各种文档格式中提取文本和元数据;
  • Elasticsearch提供了强大的全文搜索功能。它可以配置为以适当的语言分析每个文档,它可以借助boost提高某些字段的权重(例如,标题比内容更重要),ngrams分词等标准Lucene操作;
  • Elasticsearch可以高亮显示搜索结果;
  • Elasticsearch不知道这些片段在您的文档中出现的位置;
  • Elasticsearch可以将原始文档存储为附件,也可以存储并返回提取的文本。但它会返回整个文档,而不是一个页面。

【直译】您可以将整个文档作为附件发送到ElasticSearch,并且可以进行全文搜索。但是关键点在于上面的(4)和(5):知道你文档中的位置,并返回文档的某些部分。存储单个页面可能足以满足您的“我在哪里”的目的,但是您希望将它们分组,以便在搜索结果中返回文档,即使搜索关键字出现在不同的页面上。

任务分解:

3.1、索引部分——将文档存储在ElasticSearch中。

使用Tika(或任何你喜欢的)来从每个文档中提取文本。将其保留为纯文本或HTML格式以保留一些格式。
(忘记XML,不需要它)。

每个文档提取元数据:标题,作者,章节,语言,日期等。

将原始文档存储在您的文件系统中,并记录路径,以便以后可以使用。

在ElasticSearch中,索引包含所有元数据和可能的章节列表的“doc”文档。

将每个页面索引为“page”文档,其中包含:
- 包含“doc”文档ID的父字段(请参阅下面的“父子关系”)
- 文本
- 页码
- 也许章节标题或编号
- 您想要搜索的任何元数据

存储必备——父子文档关系

通常,在ES(和大多数NoSQL解决方案)中,每个文档/对象都是独立的 - 没有真正的关系。

通过建立“doc”和“page”之间的父子关系,ElasticSearch确保子文档(即“页面”)与父文档(“doc”)存储在同一分片上。

这使您能够运行has_child等的查询方式,它将根据“page”的内容找到最匹配的“doc”。

图解示例:
这里写图片描述

二、检索部分——
现在进行搜索。

你如何做到这一点取决于你想如何展示你的结果

  • 按页面page分组,
  • 按文档doc分组。

通过页面的结果很容易。

此查询返回匹配页面的列表(每个页面全部返回)以及页面中高亮显示的片段列表。

举例如下:

POST /my_index/page/_search?pretty=1
{
   "query" : {
      "match" : {
         "text" : "interesting keywords"
      }
   },
     "highlight": {
    "pre_tags": [
      "<span style=\"color:red\">"
    ],
    "post_tags": [
      "</span>"
    ],
    "require_field_match": true,
    "fields": {
      "title": {}
    }
  }
   }

显示包含文本高亮字段的“doc”分组有点棘手。 它不能用一个单一的查询来完成。

一种方法可能是:

第1步:通过对其子(“页面”)查询,返回最匹配的父级(“doc”)。

POST /my_index/doc/_search?pretty=1
{
  "query": {
    "has_child": {
      "type": "page",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "text": "interesting keywords"
              }
            },
            {
              "term": {
                "type": "page"
              }
            },
            {
              "term": {
                "factor": "5"
              }
            }
          ]
        }
      },
      "score_mode": "sum"
    }
  }
}

第2步:从上述查询中收集“doc”ID 发出新查询,从匹配的“页面”文档中获取片段。

GET /my_index/page/_search?pretty=1
{
   "query" : {
      "bool" : {
        "must":{
         "query" : {
            "match" : {
               "text" : "interesting keywords"
            }
         }},
         "filter" : {
            "terms" : {
               "doc_id" : [1,2,3]
            }
         }
      }
   },
   "highlight" : {
      "fields" : {
         "text" : {}
      }
   }
}

第3步:在您的应用程序中,将上述查询的结果按doc分组并显示出来。

使用第二个查询的搜索结果,您已经拥有了可供显示的页面的全文。要转到下一页,您可以搜索它:

GET /my_index/page/_search?pretty=1
{
   "query" : {
      "constant_score" : {
         "filter" : 
            [
               {
                  "term" : {
                     "doc_id" : 1
                  }
               },
               {
                  "term" : {
                     "page" : 2
                  }
               }
            ]
      }
   },
   "size" : 1
}

或者,给“页面”文档提供一个由doc_id _ page_num(例如123_2)组成的ID,然后您可以通过如下的检索获取该页面:

curl -XGET'http://127.0.0.1:9200/my_index/page/123_2

3、扩展

Tika是一个内容分析工具,自带全面的parser工具类,能解析基本所有常见格式的文件,得到文件的metadata,content等内容,返回格式化信息。总的来说可以作为一个通用的解析工具。特别对于搜索引擎的数据抓去和处理步骤有重要意义。

Tika是Apache的Lucene项目下面的子项目,在lucene的应用中可以使用tika获取大批量文档中的内容来建立索引,非常方便,也很容易使用。

Apache Tika toolkit可以自动检测各种文档(如word,ppt,xml,csv,ppt等)的类型并抽取文档的元数据和文本内容。

Tika集成了现有的文档解析库,并提供统一的接口,使针对不同类型的文档进行解析变得更简单。Tika针对搜索引擎索引、内容分析、转化等非常有用。

4、有没有现成的开源实现呢?

https://github.com/RD17/ambar

Ambar是一个开源文搜索引擎,具有自动抓取,OCR识别,标签分类和即时全文搜索功能。

Ambar定义了在工作流程中实现全文本文档搜索的新方法:

  • 轻松部署Ambar和一个单一的docker-compose文件
  • 通过文档和图像内容执行类似Google的搜索
  • Ambar支持所有流行的文档格式,如果需要的话可以执行OCR
  • 标记您的文件
  • 使用简单的REST
  • Api将Ambar集成到您的工作流程中

参考:

这里写图片描述

2018-06-07 22:43 思于家中床前

作者:铭毅天下
转载请标明出处,原文地址:
https://blog.csdn.net/laoyang360/article/details/80616320
如果感觉本文对您有帮助,请点击‘顶’支持一下,您的支持是我坚持写作最大的动力,谢谢!

阅读更多

扫码向博主提问

铭毅天下

博客专家

和你一起,死磕ELK Stack!
  • 擅长领域:
  • ES
  • ELK
  • bigdata
去开通我的Chat快问
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页