【知识库】教你用“知识库”+“AI工作流”搭建一个属于你自己的搜索引擎

请添加图片描述

如果你拥有一个属于自己的智能搜索引擎,并且能够快速、准确地为你提供自己所需要的信息,那将是多么美妙的体验!今天,我们就来聊聊如何通过AI与知识库的结合,打造属于你自己的搜索引擎。

AI的崛起与知识库的价值

随着人工智能技术的飞速发展,AI已经逐渐渗透到我们生活的方方面面。从语音助手到智能推荐,AI正在改变我们获取信息的方式。而知识库作为信息的集中存储和管理平台,正是实现智能搜索引擎的基础。

知识库不仅仅是一个简单的数据库,它是一个结构化的信息集合,能够帮助用户快速找到所需的答案。通过将AI技术与知识库相结合,我们可以实现更智能的搜索体验。

在这里插入图片描述

如何构建你的AI知识库?

1、打开 能用AI 进入知识库

能用AI传送门:

ChatGPT结合知识库可以实现更强大的对话能力和认知搜索。通过将ChatGPT与知识图谱结合,可以使ChatGPT具备更广泛的知识和语义理解能力,从而更好地回答用户的问题和提供相关信息。 下面是一个示例,展示了如何使用ChatGPT结合知识库进行对话和认知搜索: ```python # 导入所需的库和模型 from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 加载ChatGPT模型和tokenizer model_name = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 定义对话函数 def chat_with_knowledgebase(user_input): # 将用户输入编码为ChatGPT模型可接受的格式 input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") # 将用户输入传递给ChatGPT模型生成回复 chat_output = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # 解码模型生成的回复 chat_reply = tokenizer.decode(chat_output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # 返回ChatGPT生成的回复 return chat_reply # 用户输入问题 user_question = "什么是人工智能?" # 使用ChatGPT回答用户问题 chat_reply = chat_with_knowledgebase(user_question) # 打印ChatGPT生成的回复 print(chat_reply) ``` 这个示例展示了如何使用ChatGPT结合知识库进行对话。用户输入一个问题,ChatGPT会根据其内部的知识库和语义理解能力生成回复。通过结合知识库,ChatGPT可以回答更加专业和准确的问题,并提供相关的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ChatGPT-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值