背包问题

题目:
有N件物品和一个容量为V的背包。放入第i件物品耗费的空间是Ci,得到的价值是Wi。求解将哪些物品装入背包可使价值总和最大。

基本思路:
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即F[i,v]表示前i件物品恰放入一个容量为V的背包可以获得的最大价值。则其状态转移方程便是:
F[i,v] = max{F[i-1,v], F[i-1, v-Ci]+Wi}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所有有必要详细解释:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只和前i-1件物品相关的问题。(1)如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为F[i-1, v];(2)如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-Ci的背包中”,此时能获得的最大价值就是F[i-1, v-Ci]再加上通过放入第i件物品获得的价值Wi。
伪代码如下:

    F[0,0...V] = 0
    for i=1 to N
        for v= Ci to V
            F[i, v] = max{F[i-1, v], F[i-1, v-Ci] + Wi}

优化空间复杂度:
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i = 1…N,每次算出来二维数组F[i, 0…V]的所有值。那么,如果只用一个数组F[0…V],能不能保证第i次循环结束后F[v]中表示的就是我们定义的状态F[i, v]呢?F[i, v]是由F[i-1, v]和F[i-1, v-Ci]两个子问题递推而来的,能够保证在推F[i, v]时(也即在第i次主循环中推F[v]时)能够取用F[i-1, v]和F[i-1, v-Ci]的值呢?事实上,这要求在每次主循环中我们以v=V…0的递减顺序计算F[v],这样才能保证推F[v]时F[v-Ci]保存的是状态F[i-1, v-Ci]的值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值