Python CT图像预处理——nii格式读取、重采样、窗宽窗位设置

本文介绍了如何使用nibabel处理nii格式CT数据,包括读写操作,查看图像,以及重采样和窗宽窗位设置的方法。重点讲解了如何根据原始空间信息调整体素大小并个性化设置窗宽窗位,以优化图像显示效果。

nii格式CT数据读取

遇到nii格式的CT数据,可以通过nibabel包进行数据的读、写、查看等操作。下面列出常见操作。

读写nii格式文件

nibabel读取数据会将图像旋转九十度,也就是各轴的对应关系为[z,x,y]

import nibabel as  nb

img = nb.load(xxx.nii.gz) #读取nii格式文件
img_affine = img.affine
data = img.get_data()

存储nii格式文件,保存时要联通affine矩阵一起保存

import nibabel as  nb

nb.Nifti1Image(data,img_affine).to_filename(xxx.nii.gz)

查看

from nibabel.viewers import OrthoSlicer3D
OrthoSlicer3D(data.transpose(1,2,0)).show()

重采样

CT图像的重采样是为了使体数据中大小不同的体素变得大小相同。由于CT不同轴的体素尺寸、粗细粒度不同,直接使用不利于进行深度模型的训练和推理。

首先我们可以获取先从nii文件的头文件中获取各轴单位体素对应的空间距离。

header = img.header
print(header)

打印出来可见如下信息:

print(header)
<class 'nibabel.nifti1.Nifti1Header'> object, endian='<'
sizeof_hdr      : 348
data_type       : b''
db_name         : b''
extents         : 0
session_error   : 0
regular         : b'r'
dim_info        : 0
dim             : [  3 512 512  81   1   1   1   1]
intent_p1       : 0.0
intent_p2       : 0.0
intent_p3       : 0.0
intent_code     : none
datatype        : int16
bitpix          : 16
slice_start     : 0
pixdim          : [-1.     0.881  0.881  5.     0.     0.     0.     0.   ]
vox_offset      : 0.0
scl_slope      
### 使用Python实现nii格式医学图像归一化互信息 归一化互信息(Normalized Mutual Information, NMI)是一种常用的医学图像配准评价指标。在Python中,可以利用ANTsPy库来计算nii格式医学图像的归一化互信息[^2]。ANTsPy是一个强大的医学影像处理库,支持多种图像配准和分析功能。 以下是一个使用ANTsPy计算两幅nii格式医学图像之间归一化互信息的代码示例: ```python import ants # 读取nii格式的医学图像 fixed_image = ants.image_read("fixed_image.nii") moving_image = ants.image_read("moving_image.nii") # 计算归一化互信息 metric_value = ants.measure_image_similarity(fixed=fixed_image, moving=moving_image, metric_type="NormalizedMutualInformation") print(f"归一化互信息值: {metric_value}") ``` 上述代码中,`ants.image_read`函数用于加载nii格式的医学图像[^2]。`ants.measure_image_similarity`函数则用于计算两幅图像之间的相似性度量,其中`metric_type`参数指定为“NormalizedMutualInformation”以计算归一化互信息[^2]。 需要注意的是,在实际应用中,图像可能需要进行预处理,例如调整大小、去噪或标准化等操作,以确保计算结果的准确性。此外,ANTsPy还提供了丰富的图像配准功能,可以结合这些功能进一步优化图像对齐效果。 ### 注意事项 - 确保已安装ANTsPy库。可以通过运行`pip install antspyx`命令完成安装。 - 输入图像应具有相同的尺寸和方向。如果图像尺寸或方向不同,建议先进行配准或重采样操作。 - 在计算归一化互信息时,图像的灰度分布特性会对结果产生影响,因此可能需要对图像进行直方图匹配或其他预处理步骤。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值