郑哲东的博客

计算机视觉 行人再识别 person re-ID

阅读小结:Deep Hashing Network for Efficient Similarity Retrieval

作者:Han Zhu, Mingsheng Long, Jianmin Wang and Yue Cao 论文地址:https://pdfs.semanticscholar.org/eb0c/64244dcf238a2cbf479ab2fdc9047fc80bc5.pdfWhat: 1.特征没...

2017-12-23 12:13:04

阅读数:252

评论数:0

行人再识别 + 行人对齐

文章链接:[1707.00408] Pedestrian Alignment Network for Large-scale Person Re-identification 代码链接:layumi/Pedestrian_Alignment1.Motivation 近年来,对行人再识别(per...

2017-11-16 20:40:14

阅读数:1303

评论数:0

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

arXiv: https://arxiv.org/pdf/1704.03414.pdf What: 1. 目标是去增强  检测器对于遮挡和形变 的泛化能力  2. 但是数据集中一般   遮挡和形变 的图像较少   3. 所以作者提出了 adversary的方法去增加 训练难度 4. 整个网络是...

2017-06-16 20:35:53

阅读数:862

评论数:0

阅读小结:Unsupervised Learning of Visual Representations using Videos

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html 发表于2015ICCVWhat: 1. 使...

2017-06-10 19:20:21

阅读数:405

评论数:0

阅读小结:The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition paper link: http://cn.arxiv.org/pdf/1511.06789.pdf What: 同上一篇一样,这也是一篇关于细...

2016-12-12 15:42:55

阅读数:833

评论数:0

阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

这是一篇baidu research的paper。 主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。 What: 预测细力度分类的CNN+MDP的网络。 1. 融合了三个元素: 特征提取,attetion 和细力度分...

2016-12-11 17:12:56

阅读数:919

评论数:2

【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification 这篇paper主要提出的是一种 行人重识别 的方法。 1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。...

2016-12-11 00:07:57

阅读数:3806

评论数:3

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

What: 对于分类任务来说,最后预测的是一个联合概率。 打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。卷积和都是1,没毛病。 但是我们发现一个问题。 这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可...

2016-11-21 20:52:11

阅读数:1627

评论数:3

阅读小结:Google's Neural Machine Translation System

自然语言处理中很多思想对cv也有用,所以决定看这篇paper。 然后我会从几篇前置的paper看起。 讲CharCNN的文章: https://zhuanlan.zhihu.com/p/21242454 讲为什么Char好的文章:http://colinmorris.github.io/bl...

2016-10-01 18:18:01

阅读数:1365

评论数:0

阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。 而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊) ...

2016-09-08 19:56:11

阅读数:4343

评论数:7

阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf github: https://github.com/anewell/pose-hg-train What: 人体关键点预测,输入人体图像输出几个关键点。 使用了反复迭代bottom down/  ...

2016-09-07 14:34:53

阅读数:5400

评论数:4

阅读小结:Improved Techniques for training GANS

github地址:https://github.com/openai/improved-gan/ What: 提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。 对于G,不要求一个和test data和像的模型,也不要求不使用label。 实验中...

2016-09-02 13:40:27

阅读数:5266

评论数:9

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What CNN应用于无监督学习。将这种CNN称为DCGANs 1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。 2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?) 证明了他们的adversarial pair学习...

2016-08-27 22:38:32

阅读数:1494

评论数:2

阅读小结:Generative Adversarial Nets

这是Ian Goodfellow大神的2014年的paper,最近很火,一直没看,留的坑。 中文应该叫做对抗网络 What: 同时驯良两个模型:一个生成模型G(获得数据分布),一个区分模型D(预测输入是真实的,还是G中产生的) G的训练目标就是最大化D犯错误的可能,这样G这个生成模型就越厉害。...

2016-08-26 15:03:44

阅读数:6095

评论数:0

阅读小结: Artist style transfer for videos

这篇paper存了好久,一直没有看。今天补了 What: 看了这个youtube视频就可以感受到了。视频上做Artist Style十分酷炫! https://www.youtube.com/watch?v=Khuj4ASldmU 看前的问题: 我自己写过单帧的Art...

2016-08-25 11:37:51

阅读数:1193

评论数:0

阅读小结:Correlational Neural Networks

What: auto encoder的升级版   显式的 最大化当投影到同一空间时views之间的联系 (这里的view指的是图像,声音这种不同的输入源) 比如视频分类任务中就想把声音结合进去。 Formally Define这个任务是: 我们有一组数据Z,每个Z是由特征X,和特征Y conc...

2016-08-18 14:45:55

阅读数:360

评论数:0

阅读小结Deep Metric Learning via Lifted Structured Feature Embedding

What: 这是一篇讲图像retrieval的工作。也就是通过一张图片去搜索相关图片。比较直观的问题在于图像的传统问题 -类内差异 (比如同一物体在不同pose下的照片) -类间相似(比如不同物体在同一pose下的照片) 然后比较diao的地方是,zero-shot learning没有学习过,直...

2016-07-10 22:31:16

阅读数:3139

评论数:3

阅读小结An Improved Deep Learning Architecture for Person Re-Identification

Author: Ejaz Ahmed,Michael Jones and Tim K. Marks  http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_...

2016-07-09 19:28:12

阅读数:1845

评论数:8

阅读小结Improving Person Re-identification via Pose-aware Multi-shot Matching

Authors:Yeong-Jun Cho and Kuk-Jin Yoon  What: Person Reid 识别多个摄像头下的行人是否为同一人 Motion: 由于camera viewpoint 和 person pose带来的外形巨大改变,故提出了 Pose-aware Mult...

2016-07-09 01:07:31

阅读数:1668

评论数:0

CMS-RCNN阅读小结

阅读前疑问: 1.FasterRCNN的RPN 本来就是multi-scale的,印象中有27种,这篇文章针对人脸检测有什么改进么? 2.contextual是怎么结合附近信息? 驱动: 1.小的人脸使用rcnn难以检测 原始RCNN 一方面reception field大,所以...

2016-07-08 16:35:54

阅读数:1711

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭