Authors:Yeong-Jun Cho and Kuk-Jin Yoon
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cho_Improving_Person_Re-Identification_CVPR_2016_paper.pdf
What:
Person Reid 识别多个摄像头下的行人是否为同一人
Motion:
由于camera viewpoint 和 person pose带来的外形巨大改变,故提出了 Pose-aware Multi-shot Matching (PaMM) 分析这两种问题
(由于多个摄像头的设置往往为了看更大的区域,没有overlap)
How:
1.首先校正相机位置,基于已有算法,根据行人的高度可以得到 在图像中的每个物体在真实世界的XYZ坐标。
对同一个摄像头下连续的物体k的位置,速度,角度。得到一个时间上连续的数值,做smooth得到移动轨迹。
2.其次是产生一个multipose模型,包涵 front right left back四种选择。
训练:a.去除训练样本中角度变化过大/速度大小变化过大/遮挡过大的样本(这里遮挡的物体是预先知道了的?有个遮挡物体的集合H)
b.根据角度来分为front right left back,每种pose分别做聚类cluster(做之前filter掉有歧义的样本)
c.提取的特征为dColorSIFT
3.接下来就是匹配了,首先camera1和2下面所有行人特征都取好。
这个matching weight(基本原则,一样的pose,外形就像,自然match时W大一些。这些W也是可以学习的。)
使用SVM 优化wx的问题
备注:
论文中提到没有考虑光照影响和不同相机色差的问题。