读Self-supervised Single-view 3D Reconstruction via Semantic Consistency

论文名:Self-supervised Single-view 3D Reconstruction via Semantic Consistency
作者:Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun Jampani, Ming-Hsuan Yang, and Jan Kautz

What

  1. 从 2D 图像 和 mask 中 预测 3D mesh shap, texture 和 camera pose的 工作。
  2. 不需要3D的标注 或者 特征点标注 或者 多视角的图像 或者 3D先验的模板
  3. 只需要 同一类物体的图像,有相同的part (比如鸟都有喙)。

How

  1. 用了 SCOPS 方法 做语义分割。
  2. 语义部件不变性(semantic part invariance) 。一个点的语义是不会改变的,即使形状发生改变 。 这和我们前一篇讲的 Location Consistency 差不多。
  3. 构建的 uv map是用 semantic segmentation 的结果。
  4. 这边 只有一个encoder 来编码image,有多个decoder 分别预测 shape,camera 和 texture。
  5. 同样的 shape decoder,只是预测bias。
  6. 同样的 texture decoder,预测的是 flow。

疑问

  • 这边鸟的话,所有semantic uv map 都是一样的么? 看Fig3 对于这个 uv map 还是有点疑问。
  • 从 single image 预测 semantic uv map࿰
### 关于Self-Supervised Monocular Depth Estimation论文的复现方法与代码 #### 复现方法概述 为了成功复现Self-Supervised Monocular Depth Estimation的相关工作,通常需要遵循以下几个方面的要求: 1. **数据准备** 自监督单目深度估计的核心在于利用未标注的数据进行训练。例如,《PackNet:3D Packing for Self-Supervised Monocular Depth Estimation》提到使用视频序列和相机运动信息作为输入[^2]。因此,可以选择公开可用的数据集如KITTI、Cityscapes或DDAD(如果适用),并确保数据预处理阶段能够提取连续帧及其对应的相机姿态。 2. **网络架构设计** 不同的论文采用了不同的网络结构来提升深度估计的效果。例如: - DIFFNet引入了高分辨率编码器,并通过注意力机制优化跳接连接[^1]。 - HR-Depth则专注于增强 shortcut 连接的质量以及采用 fSE 特征融合算子以更好地保留语义和空间信息[^4]。 在实际复现时,可以根据目标需求选择合适的网络结构或者尝试结合多种技术特点。 3. **损失函数定义** 损失函数的设计对于自监督学习至关重要。常见的做法包括但不限于光度一致性损失 (photometric consistency loss),几何正则化项等。特别值得注意的是,《Digging Into Self-Supervised Monocular Depth Estimation》一文中提到了几种改进措施——最小重投影损失、自适应遮罩损失及全分辨率多尺度采样方法,这些都可以显著改善最终结果[^3]。 4. **实验环境配置** 确保开发环境中安装有必要的依赖库版本匹配(比如PyTorch/TensorFlow)。同时也要注意硬件资源是否满足大规模神经网络训练的需求。 #### 示例代码片段 以下是基于PyTorch框架的一个简单示例,展示如何构建基础版的自监督单目深度估计流程的一部分: ```python import torch import torch.nn as nn from torchvision import models class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() resnet = models.resnet18(pretrained=True) layers = list(resnet.children())[:8] self.encoder = nn.Sequential(*layers) def forward(self, x): return self.encoder(x) class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() # Define decoder architecture here... def forward(self, x): pass # Implement decoding logic def photometric_loss(img1_warped, img2): """Compute photometric reconstruction error.""" l1_loss = torch.abs(img1_warped - img2).mean() ssim_loss = SSIM()(img1_warped, img2).mean() # Assume an implemented SSIM function exists. total_loss = 0.85 * ssim_loss + 0.15 * l1_loss return total_loss # Instantiate encoder & decoder... encoder = Encoder().cuda() decoder = Decoder().cuda() # Example usage during training loop: for batch_data in dataloader: imgs, poses = batch_data['imgs'], batch_data['poses'] features = encoder(imgs.cuda()) depths_pred = decoder(features) # Predicted inverse depth maps. warped_img = warp_image(depths_pred, poses) # Function to perform warping based on predicted depths and camera poses. loss_value = photometric_loss(warped_img, target_img) optimizer.zero_grad() loss_value.backward() optimizer.step() ``` 上述代码仅为示意性质,具体实现还需参照原论文中的详细算法描述调整参数设定与功能模块。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Layumi1993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值