读Self-supervised Single-view 3D Reconstruction via Semantic Consistency

论文名:Self-supervised Single-view 3D Reconstruction via Semantic Consistency
作者:Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun Jampani, Ming-Hsuan Yang, and Jan Kautz

What

  1. 从 2D 图像 和 mask 中 预测 3D mesh shap, texture 和 camera pose的 工作。
  2. 不需要3D的标注 或者 特征点标注 或者 多视角的图像 或者 3D先验的模板
  3. 只需要 同一类物体的图像,有相同的part (比如鸟都有喙)。

How

  1. 用了 SCOPS 方法 做语义分割。
  2. 语义部件不变性(semantic part invariance) 。一个点的语义是不会改变的,即使形状发生改变 。 这和我们前一篇讲的 Location Consistency 差不多。
  3. 构建的 uv map是用 semantic segmentation 的结果。
  4. 这边 只有一个encoder 来编码image,有多个decoder 分别预测 shape,camera 和 texture。
  5. 同样的 shape decoder,只是预测bias。
  6. 同样的 texture decoder,预测的是 flow。

疑问

  • 这边鸟的话,所有semantic uv map 都是一样的么? 看Fig3 对于这个 uv map 还是有点疑问。
  • 从 single image 预测 semantic uv map࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Layumi1993

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值