阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

标签: 深度学习 CNN 物体检测
787人阅读 评论(0) 收藏 举报
分类:

arXiv: https://arxiv.org/pdf/1704.03414.pdf


What:

1. 目标是去增强  检测器对于遮挡和形变 的泛化能力 

2. 但是数据集中 遮挡和形变 的图像一般较少  

3. 所以作者提出了 adversary的方法去增加 训练难度

4. 整个网络是 基于 Fast-RCNN 而不是 Faster-RCNN



How:

1. 先pretrain Fast-RCNN网络

2. 通过sliding window (如果feature map的大小是6*6,这个window大小是2*2)找到遮住哪部分对网络影响最大,用这个使loss最大的mask来pretrain adverse的部分网络(ASDN)

3. pretrain ASDN使用的loss 是 mask上每个像素做二分类cross entropy loss(其实这里也可以直接regression吧?)

4. pretrain完了以后,实际在训练的时候,ASDN输出的不是二值,而是一个0~1之间的概率。所以可以设置一个阈值,来确定最后到底要dropout哪些。作者实际上是先找到top50% predict出来要dropout的点,然后在这50%的位置里再随机选一些点来drop。实际就是drop了 1/3的位置。

5. 现在都pretrain完了~可以连起来训练了 

6. 另外,4中使用了随机采样,是不可导的。所以作者说可以用rl的方法来处理这部分的回传bp,但没细说。

7. 类似的我们除了可以用dropout 来模拟遮挡,也可以用 stn来模拟 物体的旋转 形变。

8. STN这部分限制了旋转角度为 -10度到10度

9. A-dropout 和 A-stn可以串行

查看评论

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

这篇论文作者在Fast RCNN的基础上,运用对抗生成网络GAN的思想,加入了两个对抗网络来加强Fast RCNN算法的鲁棒性,下面的内容是这篇文章的翻译,我已经修改过大部分的内容使得读起来比较通顺,...
  • qq_14839543
  • qq_14839543
  • 2017-05-16 18:21:04
  • 1506

对抗学习用于目标检测--A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection  CVPR 2017  Caffe code : ...
  • mydear_11000
  • mydear_11000
  • 2017-06-07 16:36:03
  • 536

目标检测“A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection”

如何训练一个目标检测器,对遮挡和形变鲁棒,目前的主要方法是增加不同情况的图像数据,但这些数据有时又特别少。作者提出使用对抗生成有遮挡或形变的样本,这些样本对检测器来说比较困难,使用这些困难的正样本训练...
  • cv_family_z
  • cv_family_z
  • 2017-04-13 11:41:08
  • 3563

什么是hard negative mining?

Let’s say I give you a bunch of images that contain one or more people, and I give you bounding boxe...
  • wangsidadehao
  • wangsidadehao
  • 2017-02-13 20:10:05
  • 3247

tensorflow从0开始(6)——保存加载模型

目的 学习tensorflow的目的是能够训练的模型,并且利用已经训练好的模型对新数据进行预测。下文就是一个简单的保存模型加载模型的过程。 保存模型 import tenso...
  • searobbers_duck
  • searobbers_duck
  • 2016-06-20 16:52:12
  • 52114

[深度学习论文笔记][ICLR 18]mixup: BEYOND EMPIRICAL RISK MINIMIZATION

[ICLR 18]mixup: BEYOND EMPIRICAL RISK MINIMIZATION Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin a...
  • u010158659
  • u010158659
  • 2018-01-31 00:41:50
  • 369

A-Fast-RCNN: Hard positive generation via adversary for object detection

https://github.com/xiaolonw/adversarial-frcnn Object detection requires the ability to be robust to ...
  • u013775900
  • u013775900
  • 2017-06-07 10:25:49
  • 375

[论文笔记]A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

[论文笔记]A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detectionpaper一、论文思想训练一个目标检测器,对...
  • u011905800
  • u011905800
  • 2017-07-18 21:59:17
  • 268

目标检测资源汇总

转载自重要网站:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#t-cnn ...
  • Julialove102123
  • Julialove102123
  • 2018-01-12 11:18:12
  • 1160

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

arXiv: https://arxiv.org/pdf/1704.03414.pdf What: 1. 目标是去增强  检测器对于遮挡和形变 的泛化能力  2. 但是数据集中一般   遮挡和形变...
  • Layumi1993
  • Layumi1993
  • 2017-06-16 20:35:53
  • 787
    个人资料
    持之以恒
    等级:
    访问量: 8万+
    积分: 1290
    排名: 3万+
    关于我