A-Fast-RCNN:Hard Positive Generation via Adversary for Object Detection

本文提出了一种对抗网络方法,用于生成带有遮挡和变形的样本,以增强Fast R-CNN目标检测器的性能。通过联合学习检测器和对抗网络,实验结果显示在PASCAL VOC数据集上,检测精度有显著提升。
摘要由CSDN通过智能技术生成

一 摘要

这些近年来的建立在从ImageNet分类的任务中成功学到的强大的深层特征,因此,物体检测领域取得了显著地进步。最近的研究集中在物体检测系统主要有三个方向。

  • 第一个方向依赖于改变这些网络的基础架构。中心思想是使用更深层次的网络不仅可以导致分类改进,而且可以导致目标检测性能提高。最近在这方面的一些工作包括ResNet,Inception-ResNet和ResNetXt 。
  • 第二个研究领域是使用上下文推理(充分利用各个卷积层的特征),推理代理任务和其他自顶向下机制来改善目标检测的表示。例如,使用分割作为上下文目标检测器的一种方法,并向初始层提供反馈。使用跳过网络架构,并结合上下文推理使用来自多层表示的特征。其他方法包括使用自上而下的功能来整合上下文和更细的细节,这导致改进的检测。
  • 改进检测系统的第三个方向是更好地利用数据本身。经常认为,进来成功的目标检测器是更好的视觉表示和大规模数据用于学习的可用性的产物。因此,第三类方法尝试探索如何更好地利用数据来提高性能。一个例子是将硬实例挖掘纳入到基于训练区域的ConvNets的有效和高效的设置中。发现训练难点的其他例子包括。

这里写图片描述

一般情况下,像分类一样,遮挡和目标变形也遵循长尾理论。一些遮挡和变形非常罕见,几乎不发生;但是我们想要学习对一个这样的变形具有不变性的模型。在本文中,我们提出了一个替代解决方案。我们建议学习一个对抗网络,生成具有遮挡和变形的样本。对抗器的目标是生成让目标检测器难以进行分类的样本。在我们的框架中,原始检测器和对抗器都是以联合的方式学习的。我们的实验结果表明,与Fast-RCNN网络相比,VOC07上的mAP升幅为2.3%,VOC2012数据集有2.6%mAP提升

二 目标检测的对抗学习

我们的目标是学习对不同条件(如遮挡,变形和照明)都具有鲁棒性的目标检测器。因为,即使在大规模数据集中,也不可能覆盖所有潜在的遮挡和变形。我们采取替代方法,通过遮挡和变形的空间来让对抗网络生成让目标象检测器难以识别的样本。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值