The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
long long int oula(int n)
{
long long int res=1;
for(int t=2;t*t<=n;t++)
{
if(n%t==0)
{
n/=t;
res*=t-1;
while(n%t==0)
{
n/=t;
res*=t;
}
}
}
if(n>1)
{
res*=n-1;
}
return res;
}
int main()
{
int n;
cin>>n;
int a,b;
long long int ans;
for(int t=0;t<n;t++)
{
ans=0;
scanf("%d%d",&a,&b);
int j;
for( j=1;j*j<a;j++)
{
if(a%j==0)
{
if(j>=b)
{
ans+=oula(a/j);
}
if(a/j>=b)
{
ans+=oula(j);
}
}
}
if(j*j==a&&j>=b)
{
ans+=oula(j);
}
cout<<ans<<endl;
}
return 0;
}