FL studio 20中那些“花里胡哨”的效果器(三)

FL studio 20中那些“花里胡哨”的效果器(三)

本文经验主要来自于B站爱编曲网官方正版快速入门教程,链接如下:
爱编曲网官方正版快速入门教程

前言

图片来自于网络

FL Studio全称:Fruity Loops Studio,因此很多音乐人也习惯叫它"水果"或者“FL”,它是一个完整的音乐制作环境或数字音频工作站(DAW),包括编曲,录音,整理,记录,编辑,混音和掌握专业品质的音乐。
本篇课程我们主要讲述旁链压缩效果的产生,回音(delay)效果、Gross beat卡顿效果和电脑配置不足的一种冻结做法。涉及到了Fruity Limiter、Gross beat、Fruity Delay、Transient Pocessor等效果器。

一、旁链压缩效果

1. 概念

首先,让我们来了解一下什么是旁链压缩,side chain效果
在这里插入图片描述

  • 概念:一种闪避效果,在有两种或多种乐器共同发声时,互相不会影响到对方的效果。
  • 实现工具:第三方音源reFX、效果器LFO tools、自带效果器Gross beat、Fruity Limiter

2. 效果实现

1)第三方效果器

这里以reFX为例,简单设置一种音色,如下图所示:
在这里插入图片描述
在钢琴卷帘界面中编辑节奏型后,用kick设置一个1/4 beat 的底鼓,如下图:
在这里插入图片描述

紧接着进入效果调制,首先我们要选中要做旁路压缩效果的乐器调制界面(reFX),并找到对应的调音台映射通道,加载一种效果,这里采用LFO tools,界面如下:
在这里插入图片描述
简单设置包络线,控制右侧的vol音量调至最大,旁链效果最为明显,并将rate设置为1/4,与kick鼓频率相同,准确实现效果。

2)自带效果器
  • Gross Beat:通过设置音量包络线即可,首先我们需要选中slot1,令音量设为当前设置曲线,在右侧创建一个对应包络线实现

在这里插入图片描述

  • Fruity Limiter:在应用不规则节奏时,给被压的乐器(非底鼓)加载Fruity Limiter效果,对压制乐器(底鼓)选中对应通道的下方,右键选择Side chain to this track,此时会出现一条线,连接到另一乐器,之后进入limiter效果器界面
    在这里插入图片描述
    首先选择COMP模式,在side chain处按住左键向上拖,对应另一通道,设置阈值THERS(阈值上方的波形会被压制,压低一点就效果越明显,压缩比ratio越高同理)

二、回音(delay)效果

1. 基本界面

  • 以kick底鼓为例,我们首先设置一个简单的节奏型,调音台添加delay效果,例如Fruity Delay3效果器:
  • 效果器界面如下:
    在这里插入图片描述

2. 按钮设置

  1. INPUT:输入–干湿比–越大延迟效果越强;
  2. DELAY TIME:

– time旋钮–越大,延迟时间越长;
– TEMPO SYNC点亮–左边的time旋钮在改变时会在FL左上角解释处显示一个数字比例
eg.4:0–每一拍响一下–哒–哒哒哒哒;

  1. DELAY MODEL:mono单声道、stereo立体声、pingpong左右晃动声、off(右侧旋钮一般打到底)
  2. FEEDBACK:

level:越大、反馈(回声)值越长–哒哒哒哒哒哒哒一直哒;
cutoff:(滤波频段)在什么地方低切–音尾切断–越小越闷、越大越开放且会有cc声;
res:增加声音的刺激性、cc声更加明显;–四个模式选择–LP低通、HP高通、BP带通;
smp rate:小的时候高频声音会有亮丽的金属声
BITS:小的时候会有一点杂音的感觉;

  1. MODULATION:rate + time–delay值的渐慢;
  2. DIFFUSION:散射程度–毛躁感–增增增增的感觉;
  3. OUTPUT:WET湿度、DRY干度、TONE音调;

三、Gross Beat效果器

  1. 加载音源:选择Packs–SFX 8bit Drop
  2. 加载效果器Gross Beat:
    在这里插入图片描述
  3. 基本参数

左上方的time: 效果较为复杂,这里不过多解释
TRIG SYNC: 吸附精度;
ATT: 起始音的值–越大越模糊(咻咻咻);
RES: 尾音延长有多少–一般1/4不到即可; TNS–略;

  1. 制作卡顿效果: 在下方随意选择一个点亮(例如SLOT1–使之变成橘色),紧接着在右侧波形界面处创建波形,可以通过点击右键新建节点,构建一个类似周期矩形脉冲波形
    注意:周期越小–卡顿更加紧密
    在这里插入图片描述

四、电脑冻结技巧

在这里插入图片描述

  • 应用场景:在实际的编曲、混音操作过程中,我们的水果软件将会拥有很多pattern,众多的音源和效果器的加载,这些都对电脑配置提出了很高的要求,但是如果经济实力欠缺怎么办呢,这里我们给出了一个关键的技巧
  • midi轨道导出成音频:
    简单的讲,就是将对应模块导出成音频,通过导入对应音频,降低直接使用音源和效果器导致内存不够等情况。
  • 操作流程
  1. 找出需要提出的midi文件,即对应乐器模块,并在左侧的便捷轨道中显示
  2. 左侧对应模块,右键单击:quicker render as audio dp–快速导出(默认格式)
  3. 在左侧的最下方找到对应音频,删除原有midi块,拖动音频进入总轨

注意:右键选项还有render and replace,导出音频后可以自动实现替换

总结

在本节博客中,我们讲解了旁链压缩效果的产生,回音(delay)效果、Gross beat卡顿效果和电脑配置不足的一种冻结做法。学习到了Fruity Limiter、Gross beat、Fruity Delay、Transient Pocessor等效果器的使用方法,在下一节中将会介绍反相人声、消音伴奏并降噪的做法,敬请期待。

在这里插入图片描述

### 关于斯坦福小镇的详细介绍 斯坦福小镇是由斯坦福大学人工智能研究所开发的一个虚拟环境,旨在探索多智能体系统的交互和社会动态[^1]。该虚拟小镇包含了25个具有独特个性和背景故事的人工智能代理(Agents),它们能够在设定的空间内自由移动、相互沟通以及参与各类社交活动。 此项目的灵感来源于一款经典的模拟人生沙盒游戏,并由斯坦福与谷歌的一些顶尖专家共同打造而成[^2]。通过这种形式,研究者希望观察到更加复杂且贴近真实世界的社会现象如何在数字化场景下自然发生和发展。 当前,在这一领域内的研究方向还包括借助像GhatGPT这样的先进语言模型所提供的强大功能——例如自动规划任务流程、维持连贯性的对话机制以及高效的信息归纳技巧等——来进一步增强这些虚拟角色的表现力及其所处情境的真实性程度[^3]。 此外值得注意的是,“斯坦福小镇”不仅仅是一项技术创新成果;它还承载着深刻的社会科学研究意义。这项试验代表了当下为了理解AI技术可能给人类社会带来的影响所做的努力之一,同时也预示着未来会有越来越多关于AI融入日常生活的课题被提上议程[^5]。 ```python def simulate_town_activity(agents, environment): """ Simulates activities within Stanford Town. Args: agents (list): A list of AI agent objects with unique personalities and backstories. environment (dict): The virtual town's map resources including locations where interactions can occur. Returns: str: Summary of the day’s events generated by summarizing all dialogues between agents. """ daily_dialogs = [] for agent in agents: # Each agent performs actions based on their personality traits action_result = perform_action(agent, environment) # Agents engage in conversations according to predefined rules or learned behaviors conversation_partner = select_conversation_partner(environment['current_location'], exclude=agent) dialogue_exchange = generate_dialogue(agent, conversation_partner) daily_dialogs.append(dialogue_exchange) summary_of_day = summarize_events(daily_dialogs) return summary_of_day def compare_model_outputs(model_a_output, model_b_output): """Compares outputs from two different models.""" processed_data = preprocess_for_comparison([model_a_output, model_b_output]) similarity_score = calculate_similarity(processed_data[0], processed_data[1]) return {"similarity": similarity_score} ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生如昭诩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值