Pytorch
文章平均质量分 61
Pytorch的操作以及知识点
劲草浅躬行
笔落惊风雨不停,诗成泣鬼神经病
展开
-
pytorch的torch.autograd.Function
文章目录1. Function理解2. Function与Module差异与应用场景3. MyRelu Function4. Linear Function摘自https://zhuanlan.zhihu.com/p/277830971. Function理解Pytorch是利用Variable与Function来构建计算图的。回顾下Variable,Variable就像是计算图中的节点,保存计算结果(包括前向传播的激活值,反向传播的梯度),而Function就像计算图中的边,实现Variable原创 2021-03-08 20:52:07 · 807 阅读 · 1 评论 -
pytorch中Variable/Tensor
文章目录1. Variable & Tensor1. Variable & Tensorimport torchfrom torch.autograd import Variable # torch 中 Variable 模块tensor = torch.FloatTensor([[1,2],[3,4]])variable = Variable(tensor)print(tensor)print(variable)结果如下:tensor([[1., 2.],原创 2021-03-08 19:39:25 · 426 阅读 · 0 评论 -
Pytorch Dataloader参数及源码详解
文章目录DataloaderDataloader首先看一下最基础的DataLoader的源码中__next__的实现。为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据)。class _BaseDataLoaderIter(object): def __init__(self, loader: DataLoader) -> None: self._dataset = loader.dataset self原创 2021-02-18 15:22:10 · 3603 阅读 · 0 评论 -
pytorch中的tensor操作和numpy的array操作
文章目录cpu,gpu, torch.tensor与numpy.array转换torch(tensor)&numpy(array)的min,maxtorch(tensor)&numpy(array)的索引异同torch(tensor)&numpy(array)的索引中的Noneexpand, repeatcpu,gpu, torch.tensor与numpy.array转换CPU tensor转GPU tensor:cpu_imgs.cuda()GPU tensor原创 2021-01-18 12:15:43 · 4218 阅读 · 0 评论 -
pytorch中的named_parameters(), named_modules()
文章目录1. named_modules1. named_modules内部采用yield关键字,得到生成器。可以看到函数内部给出的例子,当外部迭代调用net.named_modules()时,会先返回prefix=’’,以及net对象本身。然后下一步会递归的调用named_modules(),继而深度优先的返回每一个module。def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = ''):原创 2021-01-18 11:37:37 · 3107 阅读 · 0 评论