深度学习
文章平均质量分 85
劲草浅躬行
笔落惊风雨不停,诗成泣鬼神经病
展开
-
Face landmark 论文笔记
Structured Landmark Detection via Topology-Adapting Deep Graph Learning原理先学习一个透视变换矩阵,将标准人脸关键点经过预测,粗投影到人脸上;再学习精细的变换:利用每个关键点的visual feature (D维) 和shape feature (2(N-1)维,是每个关键点和剩下N-1个关键点的二维向量) 结合成一个如下维度的数据。去学习一个移动向量;RD+2(N−1) R^{D+2(N-1)} RD+2(N−1)该文章较好原创 2021-06-06 13:49:28 · 1672 阅读 · 0 评论 -
Domain-adaptive object detection 跨域目标检测
文章目录1. 整体理解2. 实施细节2.1 DD模块2.2 MRL以及检测模块3. 总结##《Diversify and Match: A Domain Adaptive Representation Learning Paradigmfor Object Detection》1. 整体理解主要就是两个模块,一个是Domain Diversification (DD),另一个是Multi-domain-invariant Representation Learning (MRL)Domain D原创 2021-02-19 14:33:20 · 3695 阅读 · 0 评论 -
YOLOV5网络结构&各个模块&延伸
文章目录1. 整体网络结构YOLOV3YOLOV4YOLOV52. 模块2.1 SPP (Spatial Pyramid Pooling)1. 整体网络结构摘自 https://zhuanlan.zhihu.com/p/172121380YOLOV3YOLOV4Yolov4在Yolov3的基础上进行了很多的创新。比如输入端采用mosaic数据增强,Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式,Neck中采用了SPP、FPN+PAN的结构,输原创 2021-02-18 12:42:35 · 10609 阅读 · 0 评论 -
YOLOV5源码解析-损失解释 compute_loss(), build_targtets()
文章目录1. compute_loss2. build_targets1. compute_loss中英文混合注释如下:def compute_loss(p, targets, model): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(原创 2021-01-26 14:37:03 · 9447 阅读 · 11 评论 -
目标检测-小目标检测涨点方法
文章目录一、图片输入层面1. 数据增强策略2. 多尺度输入3. SNIP4. SNIPER二、 Neck部分(采用金字塔结构改进方案的)1. 某种金字塔2. AugFPN3. PANet4. M2Det5. Effective FPN6. MatrixNets三、 Head部分的改进方案四、 其他一、图片输入层面1. 数据增强策略增加包含小目标样本的采样率,缓解了训练过程中包含小目标图片较少的这种不均衡;将小目标在同一张图像中多拷贝几次;增加了匹配到小目标GT的anch原创 2021-01-18 12:28:36 · 3556 阅读 · 1 评论