Tensorflow-Graph构建

构建多图

正常构建多图

Tensorflow 可以通过以下方式构建多图,每一个图可以独立构建结构,只是要

# 第一种构建方式
g1 = tf.Graph()
# 第二种构建方式
tf.reset_default_graph()
g1 = tf.get_default_graph()

with g1.as_default():
    input = tf.ones((16, 32, 32, 3))
    out = slim.conv2d(input, 256, [3,3])


g2 = tf.Graph()
with g2.as_default():
    input = tf.ones((16, 32, 32, 3))
    out = slim.conv2d(input, 256, [3,3])

g1以及g1所属的out的graph是一致的,而g2以及g2所属的out的graph是一致的。如下图是某个tensor的所属graph
在这里插入图片描述

注意事项

** 然而如果某个操作的输入是基于另一幅图的,那么即使这个操作在该作用域下,该操作仍然属于另一幅图。比如采用tf.train.shuffle_batch作为输入,那么这个网络的所有操作都是和数据输入在一个图里。(此处困扰我很久,一直以为是网络构建的问题)**
如下面代码所示,这种情况下,out所属图和input应该一致,不收g=tf.Graph()的影响。

# 在另一个图里构建输入
input = tf.ones((16, 32, 32, 3))

g = tf.Graph()
with g.as_default():
    out = slim.conv2d(input, 256, [3,3])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值