构建多图
正常构建多图
Tensorflow 可以通过以下方式构建多图,每一个图可以独立构建结构,只是要
# 第一种构建方式
g1 = tf.Graph()
# 第二种构建方式
tf.reset_default_graph()
g1 = tf.get_default_graph()
with g1.as_default():
input = tf.ones((16, 32, 32, 3))
out = slim.conv2d(input, 256, [3,3])
g2 = tf.Graph()
with g2.as_default():
input = tf.ones((16, 32, 32, 3))
out = slim.conv2d(input, 256, [3,3])
g1以及g1所属的out的graph是一致的,而g2以及g2所属的out的graph是一致的。如下图是某个tensor的所属graph
注意事项
** 然而如果某个操作的输入是基于另一幅图的,那么即使这个操作在该作用域下,该操作仍然属于另一幅图。比如采用tf.train.shuffle_batch作为输入,那么这个网络的所有操作都是和数据输入在一个图里。(此处困扰我很久,一直以为是网络构建的问题)**
如下面代码所示,这种情况下,out所属图和input应该一致,不收g=tf.Graph()的影响。
# 在另一个图里构建输入
input = tf.ones((16, 32, 32, 3))
g = tf.Graph()
with g.as_default():
out = slim.conv2d(input, 256, [3,3])