截至目前发表此文,Tensorflow windows版本最高支持到1.5,若下载新版本的Tensorflow,其他相关的配置也要相应改变,比如CUDA要下载9.0版本的(注意CUDA9.1还不行,亲测),而cdDNN要下载7.0.5版本的。python 3.5。本文通过Anaconda安装tensorflow,使用spyder编译器很方便。
放一个非常新的安装过程的视频链接,帮助大家:Youtube上最新安装过程链接,更新于2018.1.27
本电脑配置:
win10 64位;CPU:i7 7300hq;GPU:GTX 1050 ; 4G显存;配置中规中矩,商务本定位。
开始搭建
一. Visual Studio 2015安装
因为如果要使用CUDA,需要Visual Studio,所以装吧。
二. Anaconda安装
Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。
conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。包管理与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,所以也称为Python的一种发行版。其实还有Miniconda,顾名思义,它只包含最基本的内容——python与conda,以及相关的必须依赖项,对于空间要求严格的用户,Miniconda是一种选择。
1.在清华大学镜像仓库下载相应版本,可以直接下载最新版本的,目前是Anaconda3-5.0.1-Windows-x86_64.exe。双击安装包,如图第二个勾选就好。
和其他windows下的程序一样,稍等就Anaconda就安装好了,然后可以通过下面的命令来查看Anaconda已经安装了哪些包:运行 开始菜单->Anaconda3—>Anaconda Prompt :
conda list
可以看到已经安装了numpy、sympy等常用的包。后续还有什么包需要,就再单独安装即可。
三. CUDA 9.0安装(注意CUDA9.1还不行,亲测)
1. 安装CUDA
CUDA 9.0下载链接
一路默认安装就行,期间可能会碰到(未完待续)
2. 验证CUDA是否安装成功
打开Anaconda promt,输入:nvcc -V
出现如下类似信息:
3. 用户环境变量配置
右击“此电脑”->“属性”->”高级系统设置”->”环境变量”,如图所示:
只需要做两件事情:
(1)确认系统变量中CUDA_PATH和CUDA_PATH_V9.0已经存在
(2)在用户变量,新建PathCUDA:C:\ProgramData\NVIDIA GPU Computing Toolkit\v9.0\bin
四. CUDNN 7.0.5安装
1.cuDNN下载
cuDNN下载链接,需要先在线注册,并填写调查问卷,然后选择如图所示版本安装,点开后选择对应windows10版本
2. cuDNN安装
解压cudnn-9.0-windows10-x64-v7,将文件夹里如下图所示的三个文件夹分别拷贝至CUDA的安装目录的对应的文件夹即可。默认文件夹在:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0
四. Tensorflow 1.5安装
1. tensorflow运行环境
(1)在windows程序中找到Anaconda Promt并打开,输入命令:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
(2)同样在Anaconda Prompt中利用Anaconda创建一个python3.5的环境(anaconda本身自带的python3.6的环境,最新的tensorflow也支持不过我还是选择了3.5的环境),环境名称为tensorflow (最好就这个名字,方便辨识),输入命令:
conda create -n tensorflow python=3.5
(3)采用activate命令启动环境
(4)输入python命令,可以查看到所配置环境的python版本为python3.5
2. 安装tensorflow
(1)先卸载再安装(如果之前安装过)
先卸载之前的Tensorflow
pip uninstall tensorflow-gpu
安装新的tensorflow 1.5
pip install tensorflow-gpu==1.5
(2)若未曾安装,直接采用
CPU版Tensorflow更新
pip3 install -upgrade tensorflow
GPU版Tensorflow更新
pip3 install --upgrade tensorflow-gpu
若想升级到指定版本(版本要自己选择),则
CPU:pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.1.0-cp35-cp35m-win_amd64.whl
GPU:pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-win_amd64.whl
3. 在tensorflow环境中安装插件
为了能在ipython 和Spyder中使用tensorflow,我们需要在tensorflow的环境中安装这两个的插件。打开Anaconda Navigator,选择Not installed,找到 ipython和Spyder并安装:
之后在windows程序中就可以找到tensorflow环境下的spyder和IPython了,君可自在遨游了:
后续缺少什么包可以两种方式,一种就是在Anaconda Navigator的tensorflow环境中找到并安装,还有一种可以在Anaconda promt中,缺少什么就通过pip命令安装什么:
activate tensorflow
pip install **
最后打开spyder(tensorflow)去试试吧…
遇到的问题(跑faster-rcnn时,还需补充安装其他模块)未完
- 下载源码后直接跑,会遇到:from easydict import EasyDict as edict,安装easydict模块即可,在anaconda promt界面,输入
activate tensorflow(你自己命名的环境)
pip install easydict
protobuf:直接pip install protobuf
opencv:直接pip install opencv-python
参考
1.http://blog.csdn.net/u010858605/article/details/64128466
2.http://blog.csdn.net/zhoutaoccu/article/details/70880304
3.http://blog.csdn.net/ygjustgo/article/details/78883981