探讨一个问题
这两天网络流行如图的一个演示问题:
有点像伽利略匹萨斜塔试验,打破了一些常识:走曲线的小球反而速度更快,奇怪也哉。这让很多文科生和一些数理不太好的理科生为之抓狂。
粗略的数值模拟
问题的分析用到的都是简单物理原理,只是计算繁琐一些,但是也没有最速下降曲线那么高端,只是引入了积分计算,还不至于引出变分法这样高级的东西。
我对动图中的两条路径做了简化,一条平直线,一条直接取余弦曲线了。只是两个小球在初始位置,给予相同的初始动能。
粗略的数值模拟表明,初始速度较小的时候,红色小球可以先于蓝色小球到达终点,但是,如果初始动能较大,则蓝色的会反超。
也就是说,在这个简化了的数值模型中,走曲线的小球比走直线小球快的情形,对小球的初始动能是有要求的,初始动能有一个“临界值”。
这个临界值取决于曲线的方程,即使在本例中为了简化分析,我用了曲线方程非常简单的余弦曲线,此时要想解析求解小球运动轨迹和时间的严格对应关系也很困难(估计是不可能),所以,数值模拟计算数值积分是比较合适的。
特别提示:到这里,问题并没有结束!为了得到关于原始问题的准确的结论,还必须往下看。
再深入一点探讨
上面的两个动态图没有考虑实际上走曲线的小球在何种初速度的情况下才能够一直贴着曲线路面走的这一可能性的边界。所以,分析的结果是粗糙的。而且,为了研究方便,假设与初速度无关,小球总能贴曲线路面走。这个假设不一定合理。
如果小球总能贴着余弦曲线走,水平方向的初速度最大是多少? 也就是,小球在无干扰的情况下平抛,其路径是一条抛物线。抛物线在初始点处的曲率半径必须小于余弦曲线的曲率半径,小球才可能一直沿着曲线路面走。
下面演示的是 v0 从 1 增加到 5 的过程中,蓝色的抛物线跟红色的余弦曲线之间的位置关系对比。容易发现,随着水平方向初速度增加,抛物线曲率半径越来越大,小球可能一出发就跳出去、而不是贴着红色的曲线走:
根据曲率半径在