SVM支持向量机四-SMO(Sequential minimal optimization)算法
SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优。关于SMO最好的资料就是他本人写的《Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines》了。
本章将讲到:
本章将讲到:
1. alphas的更新(要找违背KKT条件的更新哈)
2. b的更新
----------------------------------------------------------
1. alphas的更新(要找违背KKT条件的更新哈)
要解决的是在参数{a1,a2,.....,am}上求最大值W的问题,至于x和y都是已知数。C由我们预先设定,也是已知数.按照坐标上升的思路,我们首先固定除a1以外的所有参数,然后在a1上求极值。等一下,这个思路有问题,因为如果固定a1以外的所有参数,那么a1将不再是变量(可以由其他值推出),因为问题中规定了
常数
因此,我们需要一次选取两个参数做优化,比如a1和a2(之前要判断是否违背了KKT条件,只要有一个违背了就可以选择更新),此时a1可以由a2和其他参数表示出来。这样回带到W中,W就只是关于a2的函数了,可解。并且a1,a2满足:而且还有约束条件 每个 0 <= alpha <= C ,也就是说没更新一次之后要保证这个约束条件
从而得到a2条件下的局部最大值
看下图所示推导公式:
2. b的更新
说明我这个是借鉴了一个网友的博客: