homogeneous(齐次性)
世界上没有完全相同的两片树叶
—————Leibniz
一、概述
homogeneous在几何上是图形的相似关系,如相似三角形;在代数上是公式的相似关系,如线性方程组和多项式的齐次性;在向量分析上是近似代替思想,如微分的定义,即用线性量代替其他的非线性量;在数值分析上是泰勒多项式插值法,即用多项式在一定程度上代替某一函数。
homogeneous这个词在数学中翻译为齐次性,他描述数学对象在特定变换下,保持某种不变性或规律性。在多项式或函数中具体表现为某种相似关系,即表现为表达式中各项指数相同。
二、齐次性的代数表达
我们来看一下最简单的多项式,如下所示。
x
x
x
多项式只有一项,变量也只有一个,指数为
1
1
1。现在我们进行一种变换,将变量
x
x
x变换
k
k
k倍,即
(
x
)
→
(
k
x
)
(x)\rightarrow(kx)
(x)→(kx)。对变量进行变换之后的多项式如式(2)所示。
k
x
kx
kx
我们用
P
1
P_1
P1表示多项式(1),用
P
2
P_2
P2表示多项式(2),经过比较我们很容易得到
P
2
=
k
P
1
P_2=kP_1
P2=kP1,也就是说两个多项式之间只相差了一个常数因子
k
k
k,其余部分相同。
现在我们观察一个稍微复杂的多项式,我们称之为多项式(3),用
P
3
P_3
P3表示。如式(3)所示。
x
2
+
y
2
x^2+y^2
x2+y2
与多项式(1)相比,我们增加了一个变量
y
y
y,并且把各项指数增加到了
2
2
2。现在我们进行类似的变换,将所有变量变换
k
k
k倍,即
(
x
,
y
)
→
(
k
x
,
k
y
)
(x,y)\rightarrow(kx,ky)
(x,y)→(kx,ky)。变换后多项式如式(4)所示。
(
k
x
)
2
+
(
k
y
)
2
=
k
2
(
x
2
+
y
2
)
(kx)^2+(ky)^2=k^2(x^2+y^2)
(kx)2+(ky)2=k2(x2+y2)
我们将多项式
P
3
P_3
P3与
P
4
P_4
P4比较,也能够得出与前面相同的性质,即两式之间只相差了一个常数因子,而其他部分保持不变。
现在我们进一步观察一个更一般的多项式。
x
1
n
+
x
2
n
+
x
3
n
+
.
.
.
+
x
m
n
x_1^n+x_2^n+x_3^n+...+x_m^n
x1n+x2n+x3n+...+xmn
与上文变换相似,我们将所有变量扩大
k
k
k倍,即
(
x
1
,
x
2
,
x
3
,
.
.
.
,
x
m
)
→
(
k
x
1
,
k
x
2
,
k
x
3
,
.
.
.
,
k
x
m
)
(x_1,x_2,x_3,...,x_m)\rightarrow(kx_1,kx_2,kx_3,...,kx_m)
(x1,x2,x3,...,xm)→(kx1,kx2,kx3,...,kxm)。变换后多项式如式(6)所示。
(
k
x
1
)
n
+
(
k
x
2
)
n
+
(
k
x
3
)
n
+
.
.
.
+
(
k
x
m
)
n
=
k
n
(
x
1
n
+
x
2
n
+
x
3
n
+
.
.
.
+
x
m
n
)
(kx_1)^n+(kx_2)^n+(kx_3)^n+...+(kx_m)^n=k^n(x_1^n+x_2^n+x_3^n+...+x_m^n)
(kx1)n+(kx2)n+(kx3)n+...+(kxm)n=kn(x1n+x2n+x3n+...+xmn)
观察到现在,我们就能够对齐次性有了一个相对清晰的认识了,即多项式的变量整体变换
k
k
k倍后,多项式仍保留有原多项式的结构的性质。用代数式可表达如下。
P
(
k
x
1
,
k
x
2
,
k
x
3
,
.
.
.
,
k
x
m
)
=
k
n
P
(
x
1
,
x
2
,
x
3
,
.
.
.
,
x
m
)
P(kx_1,kx_2,kx_3,...,kx_m)=k^nP(x_1,x_2,x_3,...,x_m)
P(kx1,kx2,kx3,...,kxm)=knP(x1,x2,x3,...,xm)
在函数中的齐次性习惯表达为式(8)。
f
(
k
x
1
,
k
x
2
,
k
x
3
,
.
.
.
,
k
x
m
)
=
k
n
f
(
x
1
,
x
2
,
x
3
,
.
.
.
,
x
m
)
f(kx_1,kx_2,kx_3,...,kx_m)=k^nf(x_1,x_2,x_3,...,x_m)
f(kx1,kx2,kx3,...,kxm)=knf(x1,x2,x3,...,xm)
当变量只有一个(
m
=
1
m=1
m=1),变量指数
n
=
1
n=1
n=1时,表达式可写作如下形式,即我们常见的齐次性的表达方式。
f
(
k
x
)
=
k
f
(
x
)
f(kx)=kf(x)
f(kx)=kf(x)
三、如何理解齐次性
简单来说,齐次性就是一种结构相似性。所谓相似就是某对象经过变换之后存在相似量。下面我们用一个例子来进行说明何谓结构相似性,即齐次性。
例:
在三角形中已知两条边 a = b = k a=b=k a=b=k( k k k为变量),为构建等腰 Δ a b c \Delta abc Δabc我们还需要给出三角形的第三条边 c c c 。其中 c c c边的构建有以下两种方式:
- c 2 = a 2 + b 2 + 2 a b c o s ( π − 2 α ) c^2=a^2+b^2+2abcos(\pi-2\alpha) c2=a2+b2+2abcos(π−2α) ( α \alpha α为常数,为构建 c c c边所选取的某角度)
- c 2 = a 2 + b 2 + 1 c^2=a^2+b^2+1 c2=a2+b2+1
求 b c bc bc边角度变化。
解:
根据余弦定理可知
c
o
s
θ
=
b
2
+
c
2
−
a
2
2
b
c
cos\theta=\frac{b^2+c^2-a^2}{2bc}
cosθ=2bcb2+c2−a2,代入条件一可得
c
o
s
θ
=
b
2
+
(
a
2
+
b
2
+
2
a
b
c
o
s
(
π
−
2
α
)
−
a
2
2
b
c
cos\theta=\frac{b^2+(a^2+b^2+2abcos(\pi-2\alpha)-a^2}{2bc}
cosθ=2bcb2+(a2+b2+2abcos(π−2α)−a2
=
2
b
2
+
2
a
b
c
o
s
(
2
α
)
2
b
c
=
b
c
+
a
c
c
o
s
(
2
α
)
=
k
c
(
1
+
2
c
o
s
θ
)
2
c
o
s
2
α
=\frac{2b^2+2abcos(2\alpha)}{2bc} =\frac{b}{c}+\frac{a}{c}cos(2\alpha) =\frac{k}{c}(1+2cos\theta)2cos^2\alpha
=2bc2b2+2abcos(2α)=cb+cacos(2α)=ck(1+2cosθ)2cos2α
=
k
a
2
+
b
2
+
2
a
b
c
o
s
(
π
−
2
α
)
2
c
o
s
2
α
=
k
k
2
(
1
+
1
+
2
c
o
s
(
2
α
)
2
c
o
s
2
α
=\frac{k}{\sqrt{a^2+b^2+2abcos(\pi-2\alpha)}}2cos^2\alpha =\frac{k}{\sqrt{k^2(1+1+2cos(2\alpha)}}2cos^2\alpha
=a2+b2+2abcos(π−2α)k2cos2α=k2(1+1+2cos(2α)k2cos2α
=
k
2
k
2
2
c
o
s
2
α
2
c
o
s
2
α
=
c
o
s
α
=\frac{k}{\sqrt{2k^22cos^2\alpha}}2cos^2\alpha =cos\alpha
=2k22cos2αk2cos2α=cosα
即
θ
=
α
\theta=\alpha
θ=α,所求角度即为所设置角度。
代入条件2可得
c
o
s
θ
=
b
2
+
(
a
2
+
b
2
+
1
)
−
a
2
2
b
c
=
2
b
2
+
1
2
b
c
cos\theta=\frac{b^2+(a^2+b^2+1)-a^2}{2bc} =\frac{2b^2+1}{2bc}
cosθ=2bcb2+(a2+b2+1)−a2=2bc2b2+1
=
2
k
2
+
1
2
k
2
k
2
+
1
=
(
2
k
2
+
1
)
1
2
2
k
=\frac{2k^2+1}{2k\sqrt{2k^2+1}} =\frac{(2k^2+1)^{\frac{1}{2}}}{2k}
=2k2k2+12k2+1=2k(2k2+1)21
故
θ
=
a
r
c
c
o
s
(
=
(
2
k
2
+
1
)
1
2
2
k
)
\theta=arccos(=\frac{(2k^2+1)^{\frac{1}{2}}}{2k})
θ=arccos(=2k(2k2+1)21),其中
定义域: { k ∈ R : k ≤ − 1 2 o r k ≥ 1 2 } \{k\in R:k\leq-\frac{1}{\sqrt{2}}\ or \ k\ge\frac{1}{\sqrt{2}}\} {k∈R:k≤−21 or k≥21};
值域为: { θ ∈ R : 13 5 ∘ ≤ θ ≤ 18 0 ∘ o r 0 ∘ ≤ θ ≥ 4 5 ∘ \{\theta\in R:135^{\circ}\leq\theta\leq180^{\circ}\ or \ 0^{\circ}\leq\theta\ge45^{\circ} {θ∈R:135∘≤θ≤180∘ or 0∘≤θ≥45∘。
方式一中,等式右边构建 c c c边所使用的多项式为齐次的,而方式二中等式右边的多项式为非齐次的。经过计算我们可以得知,通过方式一构建的三角形其角度不会随 k k k的变化而变化,二方式二则相反。这里的角度不变性,就是齐次性在具体实例中的体现。