homogeneous(齐次性)

本文深入探讨了数学中的齐次性概念,通过代数表达和具体实例,阐述了齐次性在多项式、函数及几何中的应用,揭示了其在数学对象变换下的不变性和规律性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

homogeneous(齐次性)

世界上没有完全相同的两片树叶
—————Leibniz

一、概述

homogeneous在几何上是图形的相似关系,如相似三角形;在代数上是公式的相似关系,如线性方程组和多项式的齐次性;在向量分析上是近似代替思想,如微分的定义,即用线性量代替其他的非线性量;在数值分析上是泰勒多项式插值法,即用多项式在一定程度上代替某一函数。

homogeneous这个词在数学中翻译为齐次性,他描述数学对象在特定变换下,保持某种不变性或规律性。在多项式或函数中具体表现为某种相似关系,即表现为表达式中各项指数相同。

二、齐次性的代数表达

我们来看一下最简单的多项式,如下所示。
x x x
多项式只有一项,变量也只有一个,指数为 1 1 1。现在我们进行一种变换,将变量 x x x变换 k k k倍,即 ( x ) → ( k x ) (x)\rightarrow(kx) (x)(kx)。对变量进行变换之后的多项式如式(2)所示。
k x kx kx
我们用 P 1 P_1 P1表示多项式(1),用 P 2 P_2 P2表示多项式(2),经过比较我们很容易得到 P 2 = k P 1 P_2=kP_1 P2=kP1,也就是说两个多项式之间只相差了一个常数因子 k k k,其余部分相同。

现在我们观察一个稍微复杂的多项式,我们称之为多项式(3),用 P 3 P_3 P3表示。如式(3)所示。
x 2 + y 2 x^2+y^2 x2+y2
与多项式(1)相比,我们增加了一个变量 y y y,并且把各项指数增加到了 2 2 2。现在我们进行类似的变换,将所有变量变换 k k k倍,即 ( x , y ) → ( k x , k y ) (x,y)\rightarrow(kx,ky) (x,y)(kx,ky)。变换后多项式如式(4)所示。
( k x ) 2 + ( k y ) 2 = k 2 ( x 2 + y 2 ) (kx)^2+(ky)^2=k^2(x^2+y^2) (kx)2+(ky)2=k2(x2+y2)
我们将多项式 P 3 P_3 P3 P 4 P_4 P4比较,也能够得出与前面相同的性质,即两式之间只相差了一个常数因子,而其他部分保持不变。

现在我们进一步观察一个更一般的多项式。
x 1 n + x 2 n + x 3 n + . . . + x m n x_1^n+x_2^n+x_3^n+...+x_m^n x1n+x2n+x3n+...+xmn
与上文变换相似,我们将所有变量扩大 k k k倍,即 ( x 1 , x 2 , x 3 , . . . , x m ) → ( k x 1 , k x 2 , k x 3 , . . . , k x m ) (x_1,x_2,x_3,...,x_m)\rightarrow(kx_1,kx_2,kx_3,...,kx_m) (x1,x2,x3,...,xm)(kx1,kx2,kx3,...,kxm)。变换后多项式如式(6)所示。
( k x 1 ) n + ( k x 2 ) n + ( k x 3 ) n + . . . + ( k x m ) n = k n ( x 1 n + x 2 n + x 3 n + . . . + x m n ) (kx_1)^n+(kx_2)^n+(kx_3)^n+...+(kx_m)^n=k^n(x_1^n+x_2^n+x_3^n+...+x_m^n) (kx1)n+(kx2)n+(kx3)n+...+(kxm)n=kn(x1n+x2n+x3n+...+xmn)
观察到现在,我们就能够对齐次性有了一个相对清晰的认识了,即多项式的变量整体变换 k k k倍后,多项式仍保留有原多项式的结构的性质。用代数式可表达如下。
P ( k x 1 , k x 2 , k x 3 , . . . , k x m ) = k n P ( x 1 , x 2 , x 3 , . . . , x m ) P(kx_1,kx_2,kx_3,...,kx_m)=k^nP(x_1,x_2,x_3,...,x_m) P(kx1,kx2,kx3,...,kxm)=knP(x1,x2,x3,...,xm)
在函数中的齐次性习惯表达为式(8)。
f ( k x 1 , k x 2 , k x 3 , . . . , k x m ) = k n f ( x 1 , x 2 , x 3 , . . . , x m ) f(kx_1,kx_2,kx_3,...,kx_m)=k^nf(x_1,x_2,x_3,...,x_m) f(kx1,kx2,kx3,...,kxm)=knf(x1,x2,x3,...,xm)
当变量只有一个( m = 1 m=1 m=1),变量指数 n = 1 n=1 n=1时,表达式可写作如下形式,即我们常见的齐次性的表达方式。
f ( k x ) = k f ( x ) f(kx)=kf(x) f(kx)=kf(x)

三、如何理解齐次性

简单来说,齐次性就是一种结构相似性。所谓相似就是某对象经过变换之后存在相似量。下面我们用一个例子来进行说明何谓结构相似性,即齐次性。

在三角形中已知两条边 a = b = k a=b=k a=b=k k k k为变量),为构建等腰 Δ a b c \Delta abc Δabc我们还需要给出三角形的第三条边 c c c 。其中 c c c边的构建有以下两种方式:

  1. c 2 = a 2 + b 2 + 2 a b c o s ( π − 2 α ) c^2=a^2+b^2+2abcos(\pi-2\alpha) c2=a2+b2+2abcosπ2α ( α \alpha α为常数,为构建 c c c边所选取的某角度)
  2. c 2 = a 2 + b 2 + 1 c^2=a^2+b^2+1 c2=a2+b2+1

b c bc bc边角度变化。

解:

根据余弦定理可知 c o s θ = b 2 + c 2 − a 2 2 b c cos\theta=\frac{b^2+c^2-a^2}{2bc} cosθ=2bcb2+c2a2,代入条件一可得
c o s θ = b 2 + ( a 2 + b 2 + 2 a b c o s ( π − 2 α ) − a 2 2 b c cos\theta=\frac{b^2+(a^2+b^2+2abcos(\pi-2\alpha)-a^2}{2bc} cosθ=2bcb2+(a2+b2+2abcos(π2α)a2
= 2 b 2 + 2 a b c o s ( 2 α ) 2 b c = b c + a c c o s ( 2 α ) = k c ( 1 + 2 c o s θ ) 2 c o s 2 α =\frac{2b^2+2abcos(2\alpha)}{2bc} =\frac{b}{c}+\frac{a}{c}cos(2\alpha) =\frac{k}{c}(1+2cos\theta)2cos^2\alpha =2bc2b2+2abcos(2α)=cb+cacos(2α)=ck(1+2cosθ)2cos2α
= k a 2 + b 2 + 2 a b c o s ( π − 2 α ) 2 c o s 2 α = k k 2 ( 1 + 1 + 2 c o s ( 2 α ) 2 c o s 2 α =\frac{k}{\sqrt{a^2+b^2+2abcos(\pi-2\alpha)}}2cos^2\alpha =\frac{k}{\sqrt{k^2(1+1+2cos(2\alpha)}}2cos^2\alpha =a2+b2+2abcosπ2α k2cos2α=k2(1+1+2cos2α k2cos2α
= k 2 k 2 2 c o s 2 α 2 c o s 2 α = c o s α =\frac{k}{\sqrt{2k^22cos^2\alpha}}2cos^2\alpha =cos\alpha =2k22cos2α k2cos2α=cosα
θ = α \theta=\alpha θ=α,所求角度即为所设置角度。

代入条件2可得
c o s θ = b 2 + ( a 2 + b 2 + 1 ) − a 2 2 b c = 2 b 2 + 1 2 b c cos\theta=\frac{b^2+(a^2+b^2+1)-a^2}{2bc} =\frac{2b^2+1}{2bc} cosθ=2bcb2+(a2+b2+1)a2=2bc2b2+1
= 2 k 2 + 1 2 k 2 k 2 + 1 = ( 2 k 2 + 1 ) 1 2 2 k =\frac{2k^2+1}{2k\sqrt{2k^2+1}} =\frac{(2k^2+1)^{\frac{1}{2}}}{2k} =2k2k2+1 2k2+1=2k(2k2+1)21
θ = a r c c o s ( = ( 2 k 2 + 1 ) 1 2 2 k ) \theta=arccos(=\frac{(2k^2+1)^{\frac{1}{2}}}{2k}) θ=arccos(=2k(2k2+1)21),其中

定义域: { k ∈ R : k ≤ − 1 2   o r   k ≥ 1 2 } \{k\in R:k\leq-\frac{1}{\sqrt{2}}\ or \ k\ge\frac{1}{\sqrt{2}}\} {kR:k2 1 or k2 1}

值域为: { θ ∈ R : 13 5 ∘ ≤ θ ≤ 18 0 ∘   o r   0 ∘ ≤ θ ≥ 4 5 ∘ \{\theta\in R:135^{\circ}\leq\theta\leq180^{\circ}\ or \ 0^{\circ}\leq\theta\ge45^{\circ} {θR:135θ180 or 0θ45

方式一中,等式右边构建 c c c边所使用的多项式为齐次的,而方式二中等式右边的多项式为非齐次的。经过计算我们可以得知,通过方式一构建的三角形其角度不会随 k k k的变化而变化,二方式二则相反。这里的角度不变性,就是齐次性在具体实例中的体现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值