介绍一个大语言模型的微调框架Swift | AIGC(非常详细)零基础入门到精通,收藏这一篇就够了

478 篇文章 0 订阅
57 篇文章 0 订阅

一、什么微调finetune

在大语言模型中,微调(Fine-tuning)是一种重要的技术,用于提升模型在特定任务或领域上的性能。微调(Fine-tuning)是指在已经预训练好的大语言模型基础上,使用特定领域或任务的数据集进行进一步的训练,使模型能够更好地适应并完成该领域或任务的具体要求。预训练的大语言模型通常在大规模通用语料库上进行训练,学习了语言的普遍规律和特征,但对于特定领域或任务的专业知识和特定需求,往往需要通过微调来优化。

二、为什么需要微调

  1. 任务特定性能提升:预训练语言模型虽然具备强大的语言理解和生成能力,但在特定任务上的表现可能并不理想。通过微调,模型可以进一步学习任务相关的特征和模式,从而提高性能。

  2. 领域适应性:不同领域的数据集具有不同的术语、结构和语义特点。通过在该领域的有标签数据上进行微调,可以使模型更好地适应该领域的特殊需求,提高在该领域任务上的效果。

  3. 数据稀缺性:某些特定任务可能面临数据稀缺的问题,难以获得大规模的标注数据。通过微调,可以在有限的数据上训练模型,使其在数据有限的情况下也能取得较好的性能。

  4. 防止过拟合:在监督微调过程中,通过使用有标签数据进行训练,可以减少模型在特定任务上的过拟合风险,提高模型的泛化能力。

  5. 成本效益:与从头开始训练一个全新的模型相比,微调可以节省大量的时间和资源,同时快速迁移到新的任务上。

三、Swift

Swift是一个提供LLM模型轻量级训练和推理的开源框架。Swift提供的主要能力是efficient tuners,tuners是运行时动态加载到模型上的额外结构,在训练时将原模型的参数冻结,只训练tuner部分,这样可以达到快速训练、降低显存使用的目的。比如,最常用的tuner是LoRA。

总之,在这个框架中提供了以下特性:

具备SOTA特性的Efficient Tuners:用于结合大模型实现轻量级(在商业级显卡上,如RTX3080、RTX3090、RTX4090等)训练和推理,并取得较好效果

使用ModelScope Hub的Trainer:基于transformers trainer提供,支持LLM模型的训练,并支持将训练后的模型上传到ModelScope Hub中
可运行的模型Examples:针对热门大模型提供的训练脚本和推理脚本,并针对热门开源数据集提供了预处理逻辑,可直接运行使用

  • SWIFT库的github地址是:https://github.com/modelscope/swift

四、快速开始

安装

# 全量能力  
pip install ms-swift[all] -U  
# 仅使用LLM  
pip install ms-swift[llm] -U  
# 仅使用AIGC  
pip install ms-swift[aigc] -U  
# 仅使用adapters  
pip install ms-swift -U  

SWIFT库提供了LLM&AIGC模型的训练推理脚手架,支持LLaMA、QWen、ChatGLM、Stable Diffusion等多种模型的直接训练和推理,并且集成了SWIFT库提供的tuners, 开发者可以直接使用。它们的位置在:https://github.com/modelscope/swift/tree/main/examples/pytorch/llm

如果需要在自定义的训练流程中使用tuners,可以参考下面的代码。下面的代码使用LoRA在分类任务上训练了bert-base-uncased模型:

import os  
os.environ['CUDA_VISIBLE_DEVICES'] = '0'  
  
from modelscope import AutoModelForSequenceClassification, AutoTokenizer, MsDataset  
from transformers import default_data_collator  
  
from swift import Trainer, LoRAConfig, Swift, TrainingArguments  
  
  
model = AutoModelForSequenceClassification.from_pretrained(  
            'AI-ModelScope/bert-base-uncased', revision='v1.0.0')  
tokenizer = AutoTokenizer.from_pretrained(  
    'AI-ModelScope/bert-base-uncased', revision='v1.0.0')  
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])  
model = Swift.prepare_model(model, config=lora_config)  
  
train_dataset = MsDataset.load('clue', subset_name='afqmc', split='train').to_hf_dataset().select(range(100))  
val_dataset = MsDataset.load('clue', subset_name='afqmc', split='validation').to_hf_dataset().select(range(100))  
  
  
def tokenize_function(examples):  
    return tokenizer(examples["sentence1"], examples["sentence2"],  
    padding="max_length", truncation=True, max_length=128)  
  
  
train_dataset = train_dataset.map(tokenize_function)  
val_dataset = val_dataset.map(tokenize_function)  
  
arguments = TrainingArguments(  
    output_dir='./outputs',  
    per_device_train_batch_size=16,  
)  
  
trainer = Trainer(model, arguments, train_dataset=train_dataset,  
                    eval_dataset=val_dataset,  
                    data_collator=default_data_collator,)  
  
trainer.train()  

在上面的例子中,我们使用了bert-base-uncased作为基模型,将LoRA模块patch到了[‘query’, ‘key’, ‘value’]三个Linear上,进行了一次训练。

训练结束后可以看到outputs文件夹,它的文件结构如下:

outputs  
  
 |-- checkpoint-xx  
  
 |-- configuration.json  
  
 |-- default  
  
 |-- adapter_config.json  
  
 |-- adapter_model.bin  
  
 |-- ...  

可以使用该文件夹执行推理:

from modelscope import AutoModelForSequenceClassification, AutoTokenizer  
from swift import Trainer, LoRAConfig, Swift  
  
  
model = AutoModelForSequenceClassification.from_pretrained(  
            'AI-ModelScope/bert-base-uncased', revision='v1.0.0')  
tokenizer = AutoTokenizer.from_pretrained(  
    'AI-ModelScope/bert-base-uncased', revision='v1.0.0')  
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])  
model = Swift.from_pretrained(model, model_id='./outputs/checkpoint-21')  
  
print(model(**tokenizer('this is a test', return_tensors='pt')))

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值