本篇文章将介绍基于大模型来搭建本地知识库的流程。开源工具:MaxKB + Ollama
安装docker
在官网按需选择桌面版本,安装之后在docker中搜索maxkb的镜像:
搜索maxkb
点击 Run
,等镜像下载完成之后,配置参数:
配置container
在 Volumes
这里,需要配置两个 Host path
来映射容器的固定目录:
# host path是本机目录,可以随意 /host/path1 ==> /var/lib/postgresql/data /host/path2 ==> /opt/maxkb/app/sandbox/python-packages
配置好之后,点击 Run
,浏览器打开 localhost:8080
,就能访问了:
登录页面
输入默认的用户名和密码登录即可:admin
/ MaxKB@123..
除了可视化配置之外,也可在 Terminal 运行命令启动:
docker run -d --name=maxkb --restart=always -p 5432:8080 \n -v ~/.maxkb:/var/lib/postgresql/data \n -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages \n cr2.fit2cloud.com/1panel/maxkb
创建知识库
登录之后,点击知识库 --> 创建知识库:
创建知识库
然后选择 Markdown
格式的文档上传:
上传文件
示例的 README.md
是介绍组件 QueryTable
组件的使用。可以把需要上传的文档放在同一个目录一起上传,待文件上传完成之后,就完成了知识库的创建。
添加Ollama
物料上传之后,去系统管理 --> 模型设置,配置本地私有模型:
模型设置
maxkb 不仅支持常见的公有模型,也支持Ollama等私有模型。对于非敏感数据,也可以选择线上的公有模型。私有模型我们选择 ollama 进行配置。
先去官网下载 ollama
,安装之后可以跑一下中文模型 qwen2.5:
qwen2.5
因为物料都是中文,所以MaxKB也选择中文开源模型 qwen2.5
:
添加Ollama
API域名用 http://host.docker.internal:11434
,host.docker.internal
相当于容器内的 locahost
, 11434
是 ollama
模型的默认端口,API Key 随便填一个就行,最后点「添加」:
创建本地模型
如果是线上模型,域名和key就用模型对应的域名和key
创建应用
知识库和本地模型都配置完成之后,就需要创建一个应用将知识库和本地模型关联起来:
创建应用
「AI模型」选择刚创建好的本地模型。应用创建好之后,会有一个本地访问连接:
应用界面
打开这个链接,输入问题:QueryTable组件怎么用。可以看到其回复中会引用知识库 component
中的内容:
结果测试
至此,我们已完成基于本地大模型的知识库搭建。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。