2025版最新RAG知识库中文档包含表格数据如何处理?零基础入门到精通,收藏这篇就够了

我们在开发RAG系统中,知识库中的数据格式可能五花八门,而且大多都是非结构化数据内容。比如知识库中的PDF文档大概率会包含表格数据,此时,我们的处理方式需要特别的注意,以确保表格信息能够被正确提取和利用。

表格解析与结构化存储

推荐使用专门的工具或库来解析PDF中的表格内容,例如,PyMuPDF 库可以提取PDF中的表格数据,并将其转换为适合检索的格式,如:Markdown或Pandas DataFrame格式。这种方法能够有效地将表格数据结构化,便于后续的检索和生成任务。

对于复杂的表格,可以使用更高级的工具如ColPali,它结合了视觉Transformer技术,不仅提取文本信息,还能处理图像中的表格内容。

OCR技术与图像转换

如果表格以图片形式存在,可以使用OCR(光学字符识别)技术将图片中的表格转换为文本格式。比如 PaddleOCR 是一个常用的OCR工具,能够识别并提取表格中的文字。

也可以在识别到某页内容中包含有表格时,将该页PDF转换为图片,再通过OCR技术提取表格内容,然后将其存储为结构化的数据格式。

半结构化数据处理

在处理包含文本、表格和图片的PDF时,可以使用半结构化数据处理方法。例如:利用Unstructured 解析器可以拆分PDF文档中的文本、表格和图标,并创建多向量数据库来存储原始数据和摘要信息。

这种方法有助于保持表格的结构完整性,同时支持链式处理,提高检索效率。

文档切片与索引构建

在构建知识库时,通常是将PDF文档切分成多个小块,以便于检索和生成。而对于包含表格的PDF,需要特别注意切分过程中表格的完整性。

另外,构建高效的索引结构是关键,可以使用如LangChain等工具来实现对PDF文档及其表格内容的高效检索。

结合多种工具和技术

对于内容较为复杂的文档知识库,例如:招采领域的招标文件、投标文件,可能需要使用多种工具和技术组合来优化PDF表格的提取和处理。可以考虑结合NLP模型、OCR技术以及表格解析工具来提取和处理PDF中的表格信息。

如果表格数据和结构本身还比较复杂,可以考虑使用专门的表格解析框架,如:Tabula、pdfplumber 等,这些工具能够从非结构化文档中高精度地提取表格内容,具体效果还需要大家亲手尝试。

总之,在RAG系统中处理PDF文档中的数据表格时,需要根据具体需求多进行尝试,最后选择合适的工具和技术,确保表格信息能够被正确提取、存储和检索,从而提升系统的整体性能和准确性。

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

### RAG知识库定义概念解释 #### 什么是RAG知识库RAG(Retrieval-Augmented Generation)知识库是一种结合了检索技术和生成模型的方法,旨在提升自然语言处理系统的性能。通过将外部知识源引入到对话或问答系统中,使得这些系统能提供更加准确、详实的信息回复。 #### 构建高质量的知识库对于RAG的重要性 领域知识构建是知识库问答系统的核心部分,它负责将原始知识数据转换成易于存储和检索的形式,并将其保存至数据库之中[^1]。这种转化过程不仅限于简单的文本资料;实际上,除了文字内容之外,还可以向知识库添加诸如图像、音频乃至文档等多种类型的富媒体资源。一旦有查询请求触发特定记录,则关联的附加材料也会被一同返回给用户查看[^2]。 #### 实现机制概述 为了使上述功能得以实现,在实际操作层面通常会涉及到如下几个方面的工作: - **创建结构化的知识表示形式**:这一步骤涉及到了解域内的专业知识体系,并据此设计合理的实体关系网络; - **持续更新维护最新的行业资讯和技术进展**:确保所使用的参考资料始终处于最新状态是非常重要的,因为这样可以帮助保持输出结果的相关性和时效性; - **开发高效的索引算法和支持工具**:提高搜索效率意味着可以在更短的时间内找到最匹配的回答依据,从而改善用户体验。 ```python from langchain.prompts import ChatPromptTemplate template = """ You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Keep your response within three sentences and be as clear as possible. Question: {question} Context: {context} Answer:""" prompt = ChatPromptTemplate.from_template(template) print(prompt) ``` 此代码片段展示了如何利用`langchain`库中的`ChatPromptTemplate`类来自定义一个简洁明了的问题解答模板[^3]。这个模板有助于指导AI助手根据已有的背景信息给出恰当而精炼的答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值