基于多向量检索器的多模态RAG实现:用于表格、文本和图像

本文介绍了如何使用多向量检索器实现RAG,以支持跨表格、文本和图像的问答。通过结合半结构化数据的处理和多模态模型,实现了在多种数据类型上的检索增强生成。文章提供了三个新的Cookbooks,展示了在混合内容文档上应用RAG的方法,包括如何处理图像、表格和文本的摘要生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:Multi-Vector Retriever for RAG on tables, text, and images

2023 年 10 月 20 日

概括

跨不同数据类型(图像、文本、表格)的无缝问答是 RAG 追求的目标之一。我们将发布three new cookbooks,展示在包含混合内容类型的文档上使用 RAG 的多向量检索器。这些cookbooks还提出了一些将多模态 LLM与多向量检索器配对以解锁图像上的 RAG 的想法。

语境

LLM 可以通过至少两种方式获取新信息:权重更新(例如微调)和RAG(检索增强生成),它通过提示将相关上下文传递给 LLM。RAG 事实 回忆方面具有特殊的前景,因为它将LLMs的推理能力与外部数据源的内容结合起来,这对于企业数据来说尤其强大

改进 RAG 的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值