Python & OpenCV混合编程

Python是一种很强大的脚本语言,python在图像处理领域也应用广泛。

要实现Python & OpenCV混合编程,首先要让Python支持OpenCV,所以需要搭建开发环境。
本文基于python 2.7.5 win32搭建开发环境,选择用pip来安装python第三方库。然后将opencv安装目录下的..\python\2.7\x86\cv2.pyd复制到Python安装目录下的..\build\Lib\site-packages。具体搭建过程请参考其他资料。

本文主要对OpenCV代码和Python代码进行对比。
(1) 从代码本身而言,相似度非常高。将.cpp中代码复制到.py中,稍微修改就能使用;
(2) 从运行效率而言,C++运行速度快。对于小Demo而言,没有明显差别;
(3) 从处理效果而言,看不出明显的差别。

本文对输入图像做形态学处理和提取图像边缘,效果图如下:

这里写图片描述

本文分别实现上述两种编程语言,具体实现代码如下,且在vs2010,python2.7测试通过。

//.cpp文件
#include "opencv2/core/core.hpp"
#include "opencv2/hig
课程目的:OpenCV是应用非常广泛的开源视觉处理库,在图像处理、计算机视觉和自动驾驶中有着非常重要的作用。课程设计特色:(课程当前为第一期)1、C++与Python双语教学Python语言是在计算机视觉中应用最多的一种语言,在工作中,深度学习模型的训练基本上都是使用Python语言编写的训练代码。OpenCV在这个过程中用于图像的预处理(例如图像读取、数据增强)和后处理,还可以用于显示处理的结果,功能强大,使用方便。但是在功能的部署的时候,不管是部署在服务端还是PC端,开发语言基本上用的是C++,所以如何有效的使用OpenCV进行模型或者功能的部署尤为重要。C++语言应用的好坏,在面试中可以看出一个面试者的工程实践能力的强弱,两种语言的开发掌握好了可以使工作如虎添翼。2、全模块讲解我出版了一本图书《学习OpenCV4:基于Python的算法实战》,虽然这本书是写的基于Python的算法实战,但是实际上这本书有详细的介绍算法的C++接口,还有一些C++方向的案例,是以Python为主。图书出版的时候就想双语写作,只是限于篇幅没有成行。本课程不仅采用双语教学,更是对C++的每个模块都做讲解,我们知道,很多的书其实只讲imgproc,如果你翻开一本书图像的形态学运算和图像滤波都是作为独立章节讲解的,那么这本书基本上就可以确定是只是讲解了imgproc模块,但是其他的模块在工作中也有很重要的作用。例如:core模块定义了C++的基本数据结构和基本运算(如四则运算);highgui模块是可视化与交互的模块;feature2d是特征点与特征匹配相关算法所在的模块;ml是机器学习相关的模块;dnn是深度学习相关的模块,可以使用OpenCV进行深度学习模型的部署。这些是很多的书和课程都不会讲的。3、讲解细致本课程会从环境搭建开始讲解,环境搭建尤为重要。从我多年的授课经验总结来看,如果只是给了代码,很多的入门用户环境问题处理不好的话,后面的学习很难进行下去,甚至会丧失学习的信心。4、会讲解C++和Python的开发语法问题是入门用户的一大难关,特别是C++语言。大学只是教授了C语言相关的内容,C++很多同学只懂一点皮毛,所以写代码步履维艰,我们在讲解代码的过程中会顺带讲解C++和Python的内容。我们还会讲解编译相关知识,还有库的装载与链接,这些是学校里不会教的,目前也几乎没有课程讲解。5、讲师经验丰富我讲解过C++和OpenCV的多个课程,广受学员好评。我出版过两本图书《深度学习计算机视觉实战》和《学习OpenCV4》,两本书都是细致入微的讲解,主要针对的就是初学者,所以能够很好的处理课程的难易程度。6、讲义准备充分讲义准备的充分细致,标识清楚明确,重点和疑难点突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值