T检验

单总体检验:
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布

设总体共有N个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有 N n N^n Nn种抽法,即可以组成 N n N^n Nn不同的样本,在不重复抽样时,共有 C N n C_N^n CNn个可能的样本。每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。但现实中不可能将所有的样本都抽取出来,因此,样本均值的概率分布实际上是一种理论分布

样本均值的抽样分布是所有的样本均值形成的分布,即μ的概率分布。样本均值的抽样分布在形状上却是对称的。随着样本量n的增大,不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值μ,方差为总体方差的1/n。这就是中心极限定理(central limit theorem)。
当总体服从正态分布时,样本均值一定服从正态分布,即有X~N( )时,
若总体为未知的非正态分布时,只要样本容量 n足够大(通常要求n ≥30),样本均值仍会接近正态分布。样本分布的期望值为总体均值,样本方差为总体方差的1/n 。这就是统计上著名的中心极限定理。该定理可以表述为:从均值为μ、方差为σ^2(有限)的总体中,抽取样本量为n的随机样本,当n充分大时(通常要求n ≥30),样本均值的分布近似服从均值为μ ,方差为σ^2/n 的正态分布。
如果总体不是正态分布,当n为小样本时(通常n<30),样本均值的分布则不服从正态分布,服从t分布。

t = X ‾ − μ σ X n − 1 t=\frac{\overline X - \mu}{\frac{\sigma_X}{\sqrt {n-1}}} t=n1 σXXμ

t分布比较均值

单样本T检验

设计思想:
单样本T检验的设计模式如下:已知一个总体B,现在在一个未知的总体A中随机抽取了一个已知的样本C,而所问的问题是,总体A与总体B之间有无差异?
在这里插入图片描述

总体方差未知,关于均值的检验

设样本 x 1 , x 2 , ⋯   , x n 1 x_1,x_2,\cdots,x_{n_1} x1,x2,,xn1来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),且总体方差 σ 2 \sigma^2 σ2未知。在这种情况下,用样本方差 s 2 s^2 s2代替 σ 2 \sigma^2 σ2,则此时关于总体均值 μ \mu μ的检验为:
t = x ‾ − μ 0 s / n t=\frac{\overline x - \mu_0}{s / \sqrt n} t=s/n xμ0
μ = μ 0 \mu = \mu_0 μ=μ0时,根据抽样分布理论,统计量 t t t服从 t ( n − 1 ) t(n-1) t(n1)


独立样本T检验

设计思想:
独立样本T检验的设计模式如下:在两个未知的总体中分别抽取一个样本,然后比较两个总体之间是否有差异。
在这里插入图片描述

双样本等方差检验

设样本 x 1 , x 2 , ⋯   , x n 1 x_1,x_2,\cdots,x_{n_1} x1,x2,,xn1来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) y 1 , y 2 , ⋯   , y n 2 y_1,y_2,\cdots,y_{n_2} y1,y2,,yn2来自正态总体,且两个总体方差 σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma_2^2 σ22未知但相等,即 σ 1 2 = σ 2 2 \sigma_1^2=\sigma_2^2 σ12=σ22,则此时关于双样本均值差检验为:
t = x ‾ − y ‾ − d 0 s p 1 n 1 + 1 n 2 t=\frac{\overline x-\overline y - d_0}{s_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} t=spn11+n21 xyd0 s p = ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 s_p=\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}} sp=n1+n22(n11)s12+(n21)s22
μ 1 − μ 2 = d 0 \mu_1-\mu_2=d_0 μ1μ2=d0时, t t t服从 t ( n 1 + n 2 − 2 ) t(n_1+n_2-2) t(n1+n22)

双样本异方差检验

设样本 x 1 , x 2 , ⋯   , x n 1 x_1,x_2,\cdots,x_{n_1} x1,x2,,xn1来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) y 1 , y 2 , ⋯   , y n 2 y_1,y_2,\cdots,y_{n_2} y1,y2,,yn2来自正态总体,且两个总体方差 σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma_2^2 σ22未知且不相等,则此时关于双样本均值差检验为:
t = x ‾ − y ‾ − d 0 s 1 2 n 1 + s 2 2 n 2 t=\frac{\overline x-\overline y - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} t=n1s12+n2s22 xyd0
f = ( s 1 2 n 1 + s 2 2 n 2 ) 2 ( s 1 2 n 1 ) 2 n 1 − 1 + ( s 2 2 n 2 ) 2 n 2 − 1 f=\frac{(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2})^2}{\frac{(\frac{s_1^2}{n_1})^2}{n_1-1}+\frac{(\frac{s_2^2}{n_2})^2}{n_2-1}} f=n11(n1s12)2+n21(n2s22)2(n1s12+n2s22)2
μ 1 − μ 2 = d 0 \mu_1-\mu_2=d_0 μ1μ2=d0时, t t t服从自由度为 f f f t t t分布

配对样本T检验

设计思想:
配对样本T检验的设计模式如下:配对的两组数据相减,变成一组数据,然后去和已知总体0比较,其实就是转化为单样本T检验做的

配对的对象针对的是同一个对象,比如一个人,治疗前与治疗后

在这里插入图片描述

平均值的成对二样本分析

成对观测值的 t t t检验常用于两组数据均值是否相等的均值检验。
成对观测的样本以 d 1 , d 2 , ⋯   , d n d_1,d_2,\cdots,d_n d1,d2,,dn表示 n n n对观测值之差,则此时关于双样本均值差检验为:
t = d ‾ − d 0 s d / n t=\frac{\overline d - d_0}{s_d / \sqrt n} t=sd/n dd0
μ 1 − μ 2 = d 0 \mu_1-\mu_2=d_0 μ1μ2=d0时, t t t服从 t ( n − 1 ) t(n-1) t(n1)分布

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值