自动驾驶数据集介绍

自动驾驶数据集介绍

数据集是自动驾驶技术发展不可缺少的一部分,优质的数据集往往能够为算法开发带来极大的促进作用。而近十年来,自动驾驶数据集变得越来越多,无论是高校还是企业或者是其他组织,都选择开源自己的数据集,促进自动驾驶技术的进步。这些数据集大部分均采用多传感器融合技术,能够提供大量在不同环境、不同类别及不同场景下的图像、点云及IMU等数据,为目标检测、语义分割、目标跟踪等算法的开发提供了极大的方便。

KITTI

官网地址:http://www.cvlibs.net/datasets/kitti/
KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。该数据集用于评测立体图像(stereo),光流(optical flow),视觉测距(visual odometry),3D物体检测(object detection)和3D跟踪(tracking)等计算机视觉技术在车载环境下的性能。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。整个数据集由389对立体图像和光流图,39.2 km视觉测距序列以及超过200k 3D标注物体的图像组成,以10Hz的频率采样及同步。KITTI数据集是目前使用最广泛的数据集之一。
在这里插入图片描述

ApolloScape

官网地址:http://apolloscape.auto/
百度apollo于18年开源的数据集,包含3D目标检测、语义分割、目标跟踪、立体视觉、场景识别等,现已经开放了14.7万帧的像素级语义标注图像,包括感知分类和路网数据等数十万帧逐像素语义分割标注的高分辨率图像数据,以及与其对应的逐像素语义标注,覆盖了来自北京、上海和深圳的三个站点周围10KM的地域。开放的数据集主要分为三大部分:仿真数据集、演示数据集和标准数据集。除开放数据外,还配套开放云端服务,包括数据标注平台,训练学习平台以及仿真平台和标定平台,为Apollo开发者提供一整套数据计算能力的解决方案,加速迭代创新。
在这里插入图片描述

BDD100K

官网地址:https://bair.berkeley.edu/blog/2018/05/30/bdd/
论文地址:https://arxiv.org/pdf/1805.04687.pdf
数据集下载:https://bdd-data.berkeley.edu/
BDD100K是由伯克利大学AI实验室(BAIR)发布的目前最大规模、内容最具多样性的公开驾驶数据集。该数据集由100000个视频组成,每个视频大约40秒,720P,30fps,总时间超过1,100小时,视频序列还包括GPS位置、IMU数据和时间戳;该数据集涵盖了不同的天气状况,包含晴天、阴天和雨天以及在白天和夜天的不同时间。主要包括视频数据、车道标记线、道路目标检测、实例分割、可驾驶区域等相关数据,BDD100K数据集在10万个关键帧图像上标注了常见物体的BoundingBox。
在这里插入图片描述

Waymo

官网地址:https://waymo.com/open
GitHub:https://github.com/waymo-research/waymo-open-dataset
公开的数据集由 Waymo 自驾汽车在各种条件下采集的高度标注数据组成,包括了覆盖多个地点的 1000 个驾驶段上收集的数据。数据集涵盖了各种各样的环境,从密集的城市中心到郊区景观,以及白天和黑夜、黎明和黄昏、晴天和下雨天中收集的数据。数据集包含规模和覆盖范围、多样的驾驶环境、高分辨率的360度视图、密集标注以及相机-激光雷达同步,整个数据集一共包含 60 万帧,共有大约 2500 万 3D 边界框、2200 万 2D 边界框。
在这里插入图片描述

Mapillary Vistas Dataset

论文地址:https://research.mapillary.com/publication/iccv17a/
官网地址:https://research.mapillary.com/
MapillaryVistas是一个新颖的,大场景的街景数据集,包括25000张高分辨率的彩色图像,注释分成66个类,其中有37个类别是特定的附加于实例的标签。对物体的标签注释可以使用多边形进行稠密,精细的描绘,包含了来自世界各地在各种条件下捕获的图像,包括不同天气,季节和时间的图像。
在这里插入图片描述

Cityscape

专注于对城市街景的理解,包含50个从不同城市的街景中记录的各种立体视频序列,高质量的像素级注释为5000帧,另外还有200000个弱注释帧。Cityscapes数据集旨在评价视觉算法在城市场景语义理解中的性能:像素级、实例级和全景语义标注;支持旨在开发大量(弱)注释数据的研究。
在这里插入图片描述

PandaSet

官网地址:https://scale.com/open-datasets/pandaset
GitHub:https://github.com/scaleapi/pandaset-devkit
该数据集由国内激光雷达厂商禾赛科技与人工智能数据标注平台公司Scale AI联合发布了面向L5级自动驾驶的开源商用数据集,该数据集可用于训练机器学习模型,数据集首次使用了机械旋转和图像级前向两类激光雷达进行数据采集,输出点云分割结果;该数据集包括48000多个摄像头图像和16000个激光雷达扫描点云图想(超过100个8秒场景)。还包括了每个场景的28个注释和大多数场景的37个语义分割标签,并且在GitHub上提供了开发工具。传感器配置:Pandar64+PandarGT+6个摄像头+板载GPS/IMU。
在这里插入图片描述

A2D2

官网地址:https://www.a2d2.audi/a2d2/en.html
论文地址:https://arxiv.org/pdf/2004.06320.pdf
该数据集由奥迪公司提供,数据主要来自德国街道,包含RGB图像,也包括对应的3D点云数据,记录的数据是时间同步,包含目标3D包围框、语义分割、实例分割以及汽车总线提取的数据,标注的非序列数据有41227帧,都含有语义分割标注和点云标签,其中含有前置摄像头视野内目标3D包围框标注12497帧,另外还包括了392556连续帧的无标注传感器数据。传感器配置:6个camera+5个Lidar单元,可提供360度覆盖范围。
在这里插入图片描述

Oxford’s Robotic Car

官网地址:https://robotcar-dataset.robots.ox.ac.uk/
数据集介绍:https://robotcar-dataset.robots.ox.ac.uk/images/robotcar_ijrr.pdf
由牛津大学机器人实验室提出,对英国牛津的路线超过100次重复采集拍摄,该数据集捕获了多种天气、行人和交通情况下的数据,以及建筑和道路工程等长期变化,主要包含全景图像、激光雷达点云和导航信息。
在这里插入图片描述

NusScenes

官网地址:https://www.nuscenes.org/
GitHub:https://github.com/nutonomy/nuscenes-devkit
论文地址:https://arxiv.org/abs/1903.11027
nuScenes数据集是自动驾驶公司nuTonomy建立的大规模自动驾驶数据集,该数据集由1000个场景组成,每个scenes长度为20秒,包含了各种各样的情景。该数据集由140万张图像、39万次激光雷达扫描和140万个人工标注边界框组成,不仅标注了大小、范围、还有类别、可见程度等等,是迄今为止公布的最大的多模态3D无人驾驶数据集,可以用来实现更加智慧的识别算法和感知融合算法,并已在github开源。
在这里插入图片描述

H3D

官网地址:https://usa.honda-ri.com/hdd/introduction/h3d
论文地址:https://arxiv.org/abs/1903.01568
本田研究所于2019年3月发布其无人驾驶方向数据集。本数据集使用3D LiDAR扫描仪收集的大型全环绕3D多目标检测和跟踪数据集(来自Velodyne-64的密集点云)。其包含160个拥挤且高度互动的交通场景,在27,721帧中共有100万个标记实例。凭借独特的数据集大小,丰富的注释和复杂的场景,H3D聚集在一起,以激发对全环绕3D多目标检测和跟踪的研究。在这里插入图片描述

Caltech

官网地址:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
加州理工学院行人数据集包括大约10小时的640x480 30Hz视频,这些视频来自在城市环境中通过常规交通的车辆。大约250,000个帧(137个近似分钟的长段)共有350,000个边界框和2300个独特的行人被注释。注释包括边界框和详细遮挡标签之间的时间对应。
在这里插入图片描述

Lyft Level5

官网地址:https://self-driving.lyft.com/level5/data/?source=post_page
该数据集由美国公司Lyft发布,Lyft本次公开的数据集,可以满足无人驾驶研究的各种需求,包括随着时间的推移对代理的预测;激光雷达为地面真值的相机场景深度估计;基于语义映射的三维目标检测;利用激光雷达和语义图进行场景分割;代理行为分类等,和KITTI数据集一样,采用了64线雷达和多个摄像头采集数据得到,数据集包含高清语义图,该地图具有4000多个手动注释的语义元素,包括车道段、人行横道、停车标志、停车区减速带等,数据解析和nuScene一致。
在这里插入图片描述

SemanticKITTI

官网地址:http://semantic-kitti.org/
论文地址:https://arxiv.org/pdf/1904.01416.pdf
SemanticKITTI 是自动驾驶领域的权威数据集,它基于 KITTI 数据集,对 KITTI Vision Odometry Benchmark 中的所有序列都进行了标注,同时还为 LiDAR 360 度范围内采集到的所有目标,进行了密集的逐点注释。
该数据集包含 28 个标注类别,分为静态对象和动态对象,既包括行人、车辆等交通参与者,也包括停车场、人行道等地面设施。
支持旨在开发大量(弱)注释数据的研究。

Ford Multi-AV Seasonal Dataset

官网地址:https://avdata.ford.com/home/default.aspx
GitHub:https://github.com/Ford/AVData
最全面的数据集,该数据集包括了2017-2018年的自动驾驶车队在密歇根路测数据,总体积1.8TB,时间上涵盖了一年四季,包括了机场、高速公路、市中心、大学校园和郊区等多种驾驶场景。数据主要由4个激光雷达、6个1300万像素相机、一个500万像素相机和惯性测量单元收集,数据包括3D地面反射率地图、3D点云地图、六自由度真实姿态和局部姿态等信息。所右信息均已rosbag的格式提供,方便再ROS中进行可视化和使用。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值