在计算机视觉领域,显著性区域检测是十分重要的一个分支。它在内容保持的图像缩放、自适应的图像压缩以及图像分割等领域都有着十分重要的应用。博主在上一篇博文中提到:现在的计算机视觉领域,主要做的是自底向上的显著性区域检测,所以这篇文章博主将介绍一下显著性区域检测方法的大致分类。由于博主刚刚开始这个领域的学习与研究,难免出现错误和疏漏。如有不妥之处还望大家多多海涵,不吝赐教。
一般来说,自底向上的显著性检测方法主要分为两大类:基于手工特征的显著性检测方法和基于深度学习特征的显著性检测方法。下面来详细介绍一下:
1.基于手工特征的显著性检测方法
1) 基于对比度先验
a) 基于局部对比的显著性检测
这种方法只能检测到显著性目标的边界,会丢失内部区域。即会造成“不一致突出显著区
域”问题。
b) 基于全局对比的显著性检测
这种方法能一定程度上消除不一致突出显著区域问题,但当显著区域非常大或者图像背景非
常复杂时,算法会趋于突出背景区域而非显著区域。即"突出图像背景问题"。
2) 基于前景先验
a) 利用先验知识:前景目标出现在图像中心区域。这种方法对于目标实际位置并不在图像中心
的例子会造成错误检测
3) 基于背景先验
这种方法通常以超像素为计算单元,将其中位于图像四周的超像素标定为背景种子点,然后利用
某种传播机制来估计未标定的超像素的显著性值。根据传播机制的不同,可分为以下三类:
a) 基于部分区域对比度的显著性计算
b) 基于图模型的显著性计算
c) 基于监督学习的显著性计算
2.基于深度学习特征的显著性区域检测
3.思维导图
基于篇幅限制,博主将会在接下来的文章中简述以上方法及其优劣。