MATLAB马氏链分析工具

本文整理下齐次有限状态离散时间马氏链的相关基础内容并及MATLAB中提供的与之相关的性质。

基本性质

为进行状态分类,先引入一组重要性质和定义
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

平稳分布

在这里插入图片描述
式子7-94为平衡方程: π = π ∗ P \pi=\pi*P π=πP
不可约且正常返的马氏链一定存在平稳分布,更一般的,只要马氏链存在一个闭的不可约子集,并且该集合中的状态均是正常返的,则存在平稳分布。
在这里插入图片描述

混合时间(mixing time)

在概率论中,马尔可夫链的混合时间是马尔可夫链“接近”其稳态分布的所需时间。
在这里插入图片描述
对于遍历链,任何初始分布都以第二大特征值模量(SLEM) μ \mu μ确定的速率收敛到平稳分布。 谱间隙 1 − μ 1-\mu 1μ,提供了一种可视化的测量方法,具有较大的间隙(较小的SLEM圆),可产生更快的收敛。matlab中估计mixing time的式子是:
t M i x = − 1 log ⁡ μ tMix=-\frac{1}{\log{\mu}} tMix=logμ1

MATLAB马氏链工具包

MATLAB在Econometrics Toolbox中提供dtmc类,可绘制状态转移图、判断遍历性等等

  1. 生成马氏链
    直接输入一步状态转移矩阵即可
    P = [ 0   0  1/2 1/4 1/4  0   0 ;
          0   0  1/3  0  2/3  0   0 ;
          0   0   0   0   0  1/3 2/3;
          0   0   0   0   0  1/2 1/2;
          0   0   0   0   0  3/4 1/4;
         1/2 1/2  0   0   0   0   0 ;
         1/4 3/4  0   0   0   0   0 ];
    mc = dtmc(P);
    
  2. 状态类的判断
    通过绘制状态转移图即可判断马氏链中state类型:
    graphplot(mc,'ColorNodes',true);
    

在这里插入图片描述

  1. 可约性、遍历性
    tfRed = isreducible(mc)
    tfErg = isergodic(mc)
    
  2. 周期性
    周期性可以状态分布概率直观的看出来
    X1 = redistribute(mc,20);
    figure;
    distplot(mc,X1);
    

在这里插入图片描述

  1. 平稳分布及混合时间
    直接调用下面命令即可
    [xFix,tMix] = asymptotics(mc)
    
    为观察收敛速度,可绘制特征图
    figure;
    eigplot(mc);
    

在这里插入图片描述
其中粉色阴影表示最大特征值和第二大特征值之间的gap,越大则收敛越快(mixing time越小),若存在周期=k,则半径为1的圆上会有k个点,即存在k个模为1的特征值。

参考

https://www.mathworks.com/help/econ/markov-process-models.html?s_tid=CRUX_lftnav
《随机过程及其应用》第二版 陆大金

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值